17 research outputs found

    Anti-Fouling Effects of Saponin-Containing Crude Extracts from Tropical Indo-Pacific Sea Cucumbers

    Get PDF
    Sea cucumbers are bottom dwelling invertebrates, which are mostly found on subtropical and tropical sea grass beds, sandy reef flats, or reef slopes. Although constantly exposed to fouling communities in these habitats, many species are surprisingly free of invertebrate epibionts and microfouling algae such as diatoms. In our study, we investigated the anti-fouling (AF) activities of different crude extracts of tropical Indo-Pacific sea cucumber species against the fouling diatom Cylindrotheca closterium. Nine sea cucumber species from three genera (i.e., Holothuria, Bohadschia, Actinopyga) were selected and extracted to assess their AF activities. To verify whether the sea cucumber characteristic triterpene glycosides were responsible for the observed potent AF activities, we tested purified fractions enriched in saponins isolated from Bohadschia argus, representing one of the most active anti-fouling extracts. Saponins were quantified by vanillin-sulfuric acid colorimetric assays and identified by LC-MS and LC-MS/MS analyses. We were able to demonstrate that AF activities in sea cucumber extracts were species-specific, and growth inhibition as well as attachment of the diatom to surfaces is dependent on the saponin concentration (i.e., Actinopyga contained the highest quantities), as well as on the molecular composition and structure of the present saponins (i.e., Bivittoside D derivative was the most bioactive compound). In conclusion, the here performed AF assay represents a promising and fast method for selecting the most promising bioactive organism as well as for identifying novel compounds with potent AF activities for the discovery of potentially novel pharmacologically active natural products

    High expression of Talin-1 is associated with tumor progression and recurrence in melanoma skin cancer patients.

    Get PDF
    BACKGROUND: Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors. METHODS: Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed. RESULTS: Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P \u3c 0.001, and P \u3c 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients. CONCLUSION: Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians

    No full text
    Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria. Furthermore, we quantified and correlated the concentrations of sea cucumber characteristic saponin compounds as effective chemical defensive compounds in all 14 crude extracts by using the vanillin–sulfuric acid test. The initial results revealed that among all tested sea cucumber species that were defended against at least one ecological threat (predation and/or bacterial attack), Bohadschiaargus, Stichopuscholoronotus and Holothuria fuscopunctata were the three most promising bioactive sea cucumber species. Therefore, following further fractionation and purification attempts, we also tested saponin-containing butanol fractions of the latter, as well as two purified saponin species from B. argus. We could demonstrate that both, the amount of saponin compounds and their structure likely play a significant role in the chemical defense strategy of the sea cucumbers. Our study concludes that the chemical and morphological defense mechanisms (and combinations thereof) differ among the ecological strategies of the investigated holothurian species in order to increase their general fitness and level of survival. Finally, our observations and experiments on the chemical ecology of marine organisms can not only lead to a better understanding of their ecology and environmental roles but also can help in the better selection of bioactive organisms/compounds for the discovery of novel, pharmacologically active secondary metabolites in the near future

    The Immediate Effect of Lateral Wedge Insoles, With and Without a Subtalar Strap, on the Lateral Trunk Lean Motion in Patients With Knee Osteoarthritis

    No full text
    Background: Orthotic interventions for knee osteoarthritis (OA) aim to reduce mechanical loading on the medial compartment of the knee and may lessen the lateral trunk lean as the most important compensatory gait strategy. The lateral wedge insole is a known orthotic intervention for knee OA. However, the question whether the addition of a subtalar strap to the wedge improves its effect has not been addressed in the literature. Objective: To compare the effects of lateral wedge insoles, with and without a subtalar strap, on the lateral trunk lean in patients with knee OA. Methods: Twenty-three patients aged over 40 years, with grade I or II OA of the medial compartment of one knee, based on the American College of Rheumatology criteria, were included in this study. The patients were diagnosed with OA based on a clinical examination, and the diagnosis was confirmed with radiographs. A 3-dimensional motion measurement system was used to collect the gait data for 3 different conditions: (1) with no insole, (2) with a lateral wedge insole, and (3) with a lateral wedge insole and a subtalar strap. The immediate effect of the 3 test conditions on the lateral trunk lean was compared during a gait cycle a stance phase and at the point of midstance. Results: Based on the laboratory coordinate system, the 3 conditions had no significant effect on the lateral trunk lean during a gait cycle and a stance phase and at the point of midstance in patients with knee OA. Conclusion: The results of this study demonstrated that the lateral wedge insoles, with and without a subtalar strap, had no immediate effect on the lateral trunk lean in patients with knee OA. However, the long-term effect of lateral wedge insoles on the lateral trunk lean in these patients requires further investigation

    High expression of Talin-1 is associated with tumor progression and recurrence in melanoma skin cancer patients

    No full text
    Abstract Background Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors. Methods Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed. Results Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P < 0.001, and P < 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients. Conclusion Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers

    Acclimation capability inferred by metabolic performance in two sea cucumber species from different latitudes

    No full text
    The notion that thermal specialists from tropical regions live closer to their temperature limits than temperate eurytherms, seems too generalized. Species specific differences in physiological and biochemical stress reactions are linked to key components of organism fitness, like metabolic capacity, which indicates that acclimation potential across latitudes might be highly diverse rather than simplistic. In this study the exposure of a tropical (Holothuria scabra) and a temperate (Holothuria forskali) sea cucumber species to identical cold- and warmacclimation stress was compared using the key metabolic parameters, respiration rate, enzyme activity (ETS, LDH, IDH), and energy reserve fractions (lipid, carbohydrate and protein). Results show much broader respiratory adjustments, as response to temperature change, in H. scabra (2–30 μgO2*gww−1 *h−1) compared to H. forskali (1.5–6.6 μgO2*gww−1 *h−1). Moreover, the tropical species showed clearly pronounced up and down regulation of metabolic enzymes and shifts in energy reserves, due to thermal acclimation, while the same metabolic indicators remained consistent in the temperate species. In summary, these findings indicate enhanced metabolic plasticity in H. scabra at the cost of elevated energy expenditures, which seems to favor the tropical stenotherm in terms of thermal acclimation capacity. The comparison of such holistic metabolic analyses between conspecifics and congeners, may help to predict the heterogeneous effects of global temperature changes across latitudinal gradients.info:eu-repo/semantics/publishedVersio

    Towards the Development of Standardized Bioassays for Corals: Acute Toxicity of the UV Filter Benzophenone-3 to Scleractinian Coral Larvae

    No full text
    Coral reefs have been declining globally at a historically unprecedented rate. Ultraviolet (UV) filters used in sunscreens may contribute to this decline at local scales, which has already led to bans on various organic UV filters in some regions. However, the underlying studies for these bans demonstrated significant flaws in the experimental design due to a lack of validated and standardized testing methods for corals. This study aimed to investigate options for the development of a standard acute toxicity test for the larval stage of scleractinian corals. Planula larvae of two brooding (Leptastrea purpurea and Tubastraea faulkneri) and two spawning (Acropora digitifera and A. millepora) species were exposed to the organic UV filter benzophenone-3 (BP3) for 48 h under static conditions. We observed interspecific variations in toxicity, with A. digitifera being the most sensitive (LC50 = 0.75 µg L−1) and T. faulkneri the least sensitive (LC50 = 2951.24 µg L−1) species. Inhibition of settlement was found to be a useful endpoint leading to an EC50 of 1.84 µg L−1 in L. purpurea larvae. Although the analytical challenges of measuring lipophilic substances in small volume test setups remain, the here applied test design and selected endpoints are suitable for further validation and subsequent standardization

    DNA plasmid coding for Phlebotomus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica.

    Get PDF
    BackgroundThe vector-borne disease leishmaniasis is transmitted to humans by infected female sand flies, which transmits Leishmania parasites together with saliva during blood feeding. In Iran, cutaneous leishmaniasis (CL) is caused by Leishmania (L.) major and L. tropica, and their main vectors are Phlebotomus (Ph.) papatasi and Ph. sergenti, respectively. Previous studies have demonstrated that mice immunized with the salivary gland homogenate (SGH) of Ph. papatasi or subjected to bites from uninfected sand flies are protected against L. major infection.Methods and resultsIn this work we tested the immune response in BALB/c mice to 14 different plasmids coding for the most abundant salivary proteins of Ph. sergenti. The plasmid coding for the salivary protein PsSP9 induced a DTH response in the presence of a significant increase of IFN-γ expression in draining lymph nodes (dLN) as compared to control plasmid and no detectable PsSP9 antibody response. Animals immunized with whole Ph. sergenti SGH developed only a saliva-specific antibody response and no DTH response. Mice immunized with whole Ph. sergenti saliva and challenged intradermally with L. tropica plus Ph. sergenti SGH in their ears, exhibited no protective effect. In contrast, PsSP9-immunized mice showed protection against L. tropica infection resulting in a reduction in nodule size, disease burden and parasite burden compared to controls. Two months post infection, protection was associated with a significant increase in the ratio of IFN-γ to IL-5 expression in the dLN compared to controls.ConclusionThis study demonstrates that while immunity to the whole Ph. sergenti saliva does not induce a protective response against cutaneous leishmaniasis in BALB/c mice, PsSP9, a member of the PpSP15 family of Ph. sergenti salivary proteins, provides protection against L. tropica infection. These results suggest that this family of proteins in Ph. sergenti, Ph. duboscqi and Ph. papatasi may have similar immunogenic and protective properties against different Leishmania species. Indeed, this anti-saliva immunity may act as an adjuvant to accelerate the cell-mediated immune response to co-administered Leishmania antigens, or even cause the activation of infected macrophages to remove parasites more efficiently. These findings highlight the idea of applying arthropod saliva components in vaccination approaches for diseases caused by vector-borne pathogens
    corecore