682 research outputs found

    Bortezomib a Safe Treatment for Patients with Multiple Myeloma and Cystic Fibrosis

    Get PDF
    Introduction: Bortezomib is a proteasome inhibitor that targets myeloma cell and its bone marrow micro-environment. Intravenous Bortezomib (1.3 mg/m2 administered on days 1,4,8 and 11 of a 21 day cycle), with or without dexamethasone, is effective and well tolerated in patients with relapsed/refractory multiple myeloma (MM). Methods:  We treated a MM patient with Cystic Fibrosis with Bortezomib alone to avoid the use of corticosteroid and consequently the risk of lung infection reactivations, first of all due to the patient Pseudomonas aeruginosa colonization. Bortezomib was administrated at 1.3 mg/m2 on days 1,4,8 and 11 with a 10 day rest period  and four 21-day cycles were administered. We evaluate the treatment response and toxicity. Results: After four cycles of therapy the patient achieved a  very good partial response (VGPR) according to the IMWG response criteria, without clinically significant side effects. Conclusions: Bortezomib can be successfully utilized for the management of this difficult disease situatio

    HbF reactivation in sibling BFU-E colonies: synergistic interaction of kit ligand with low-dose dexamethasone

    Get PDF
    Mechanisms underlying fetal hemoglobin (HbF) reactivation in stress erythropoiesis have not been fully elucidated. We suggested that a key role is played by kit ligand (KL). Because glucocorticoids (GCs) mediate stress erythropoiesis, we explored their capacity to potentiate the stimulatory effect of KL on HbF reactivation, as evaluated in unilineage erythropoietic culture of purified adult progenitors (erythroid burst-forming units [BFU-Es]). The GC derivative dexamethasone (Dex) was tested in minibulk cultures at graded dosages within the therapeutical range (10−6 to 10−9M). Dex did not exert significant effects alone, but synergistically it potentiated the action of KL in a dose-dependent fashion. Specifically, Dex induced delayed erythroid maturation coupled with a 2-log increased number of generated erythroblasts and enhanced HbF synthesis up to 85% F cells and 55% γ-globin content at terminal maturation (ie, in more than 80%-90% mature erythroblasts). Equivalent results were obtained in unicellular erythroid cultures of sibling BFU-Es treated with KL alone or combined with graded amounts of Dex. These results indicate that the stimulatory effect of KL + Dex is related to the modulation of γ-globin expression rather than to recruitment of BFU-Es with elevated HbF synthetic potential. At the molecular level, Id2 expression is totally suppressed in control erythroid culture but is sustained in KL + Dex culture. Hypothetically, Id2 may mediate the expansion of early erythroid cells, which correlates with HbF reactivation. These studies indicate that GCs play an important role in HbF reactivation. Because Dex acts at dosages used in immunologic disease therapy, KL + Dex administration may be considered to develop preclinical models for β-hemoglobinopathy treatment

    Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes

    Get PDF
    To investigate the involvement of small nerve fibers in Ehlers-Danlos syndrome (EDS). Patients diagnosed with EDS underwent clinical, neurophysiologic, and skin biopsy assessment. We recorded sensory symptoms and signs and evaluated presence and severity of neuropathic pain according to the Douleur Neuropathique 4 (DN4) and ID Pain questionnaires and the Numeric Rating Scale (NRS). Sensory action potential amplitude and conduction velocity of sural nerve was recorded. Skin biopsy was performed at distal leg and intraepidermal nerve fiber density (IENFD) obtained and referred to published sex- and age-adjusted normative reference values. Our cohort included 20 adults with joint hypermobility syndrome/hypermobility EDS, 3 patients with vascular EDS, and 1 patient with classic EDS. All except one patient had neuropathic pain according to DN4 and ID Pain questionnaires and reported 7 or more symptoms at the Small Fiber Neuropathy Symptoms Inventory Questionnaire. Pain intensity was moderate (NRS ≥4 and <7) in 8 patients and severe (NRS ≥7) in 11 patients. Sural nerve conduction study was normal in all patients. All patients showed a decrease of IENFD consistent with the diagnosis of small fiber neuropathy (SFN), regardless of the EDS type. SFN is a common feature in adults with EDS. Skin biopsy could be considered an additional diagnostic tool to investigate pain manifestations in EDS

    Creatine kinase and progression rate in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no recognized clinical prognostic factor. Creatinine kinase (CK) increase in these patients is already described with conflicting results on prognosis and survival. In 126 ALS patients who were fast or slow disease progressors, CK levels were assayed for 16 months every 4 months in an observational case-control cohort study with prospective data collection conducted in Italy. CK was also measured at baseline in 88 CIDP patients with secondary axonal damage and in two mouse strains (129SvHSD and C57-BL) carrying the same SOD1G93A transgene expression but showing a fast (129Sv-SOD1G93A) and slow (C57-SOD1G93A) ALS progression rate. Higher CK was found in ALS slow progressors compared to fast progressors in T1, T2, T3, and T4, with a correlation with Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) scores. Higher CK was found in spinal compared to bulbar-onset patients. Transgenic and non-transgenic C57BL mice showed higher CK levels compared to 129SvHSD strain. At baseline mean CK was higher in ALS compared to CIDP. CK can predict the disease progression, with slow progressors associated with higher levels and fast progressors to lower levels, in both ALS patients and mice. CK is higher in ALS patients compared to patients with CIDP with secondary axonal damage; the higher levels of CK in slow progressors patients, but also in C57BL transgenic and non-transgenic mice designs CK as a predisposing factor for disease rate progression

    A Small Molecule SMAC Mimic LBW242 Potentiates TRAIL- and Anticancer Drug-Mediated Cell Death of Ovarian Cancer Cells

    Get PDF
    BACKGROUND: Ovarian cancer remains a leading cause of death in women and development of new therapies is essential. Second mitochondria derived activator of caspase (SMAC) has been described to sensitize for apoptosis. We have explored the pro-apoptotic activity of LBW242, a mimic of SMAC/DIABLO, on ovarian cancer cell lines (A2780 cells and its chemoresistant derivative A2780/ADR, SKOV3 and HEY cells) and in primary ovarian cancer cells. The effects of LBW242 on ovarian cancer cell lines and primary ovarian cancer cells was determined by cell proliferation, apoptosis and biochemical assays. PRINCIPAL FINDINGS: LBW242 added alone elicited only a moderate pro-apoptotic effect; however, it strongly synergizes with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or anticancer drugs in inducing apoptosis of both ovarian cancer cell lines and primary ovarian cancer cells. Mechanistic studies show that LBW242-induced apoptosis in ovarian cancer cells is associated with activation of caspase-8. In line with this mechanism, c-FLIP overexpression inhibits LBW242-mediated apoptosis. CONCLUSION: LBW242 sensitizes ovarian cancer cells to the antitumor effects of TRAIL and anticancer drugs commonly used in clinic. These observations suggest that the SMAC/DIABLO mimic LBW242 could be of value for the development of experimental strategies for treatment of ovarian cancer

    Elotuzumab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma: a multicenter, retrospective real-world experience with 200 cases outside of controlled clinical trials

    Get PDF
    In the ELOQUENT-3 trial, the combination of elotuzumab, pomalidomide and dexamethasone (EloPd) proved a superior clinical benefit over Pd with a manageable toxicity profile, leading to its approval in relapsed/refractory multiple myeloma (RRMM), who had received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI). We report here a real-world experience of 200 RRMMs treated with EloPd in 35 Italian centers outside of clinical trials. In our dataset, the median number of prior lines of therapy was 2, with 51% of cases undergoing autologous stem cell transplant (ASCT) and 73% exposed to daratumumab. After a median follow-up of 9 months, 126 patients stopped EloPd, most of them (88.9%) because of disease progression. The overall response rate (ORR) was 55.4%, in line with the pivotal trial results. Regarding adverse events, our cohort experienced a toxicity profile similar to the ELOQUENT-3 trial, with no significant differences between younger (&lt;70 years) and older patients. The median progression-free survival (PFS) was 7 months, shorter than that observed in the ELOQUENT-3, probably due to the different clinical characteristics of the two cohorts. Interestingly, the ISS stage III (HR:2.55) was associated with worse PFS. Finally, our series's median overall survival (OS) was shorter than that observed in the ELOQUENT-3 trial (17.5 versus 29.8 months). In conclusion, our real-world study confirms EloPd as a safe and possible therapeutic choice for RRMM who received at least two prior therapies, including lenalidomide and a PI

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations
    corecore