21 research outputs found

    Glutathione determination and a study of the activity of glutathione-peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants

    Get PDF
    Producción CientíficaThe aim of this work is to study the temporary variation of oxidative stress in renal transplants, both in plasma andin erythrocytes (CR). In order to do so, we determined total glutathione (GST) levels, both oxidized (GSSG) and reduced (GSH), and the activity of enzymes, glutathione peroxidase (G-px), glutathione reductase (G-red) and glutathione transferase (GSt), in renal transplant patients. Determinations were made 48 h before the transplant 1 week and 2 weeks after the renal transplant. The results obtainedconfirm a high ‘‘oxidative stress’’ rate, resulting from the equilibrium between the production of free radicals andthe activity of antioxidants, the former being higher proportionally. Immediately after the transplant there is an increase of oxidative stress, which results in an increase of G-red, a marked decrease of G-px in plasma andin erythrocytes (CR) andan abrupt drop both in GST levels in plasma andin GSG (as well as in the [GSH]/[GSSG] relationship). As times goes on, after the transplant, there is a significant improvement in the activity of antioxidant enzymes, but there is no normalization, which is easily seen in the fact that total glutathione levels andthe activity of the various enzymes approach the average values of the control group

    Toll-Like receptor 2 R753Q polymorphisms are associated with an increased risk of infective endocarditis

    Get PDF
    Producción CientíficaThe ability to respond to the ligands of toll-like receptors (TLR) could be affected by single nucleotide polymorphisms in TLR codifying genes. The influence of the polymorphisms TLR2 (R753Q, R677W), TLR4 (D299G, T399I) and CD14 (C-159T) was consecutively studied in 65 patients with infective endocarditis. The control group (n=66) consisted of healthy volunteers. All the polymorphisms were genotyped by means of restriction analysis after their amplification. An association between endocarditis and variants of TLR2 R753Q (P < .001) was observed, but no association with other polymorphisms was found. The TLR2 R753Q co-dominant (odds ratio=13.33), recessive (odds ratio=9.12) and dominant (odds ratio=3.65) genotypes showed a positive association with the infective endocarditis phenotype. The polymorphism TLR2 R753Q was associated with a greater susceptibility towards the development of infective endocarditis. Further studies are required to validate these results and identify other genetic risk factors

    Binding Potassium to Improve Treatment With Renin-Angiotensin-Aldosterone System Inhibitors: Results From Multiple One-Stage Pairwise and Network Meta-Analyses of Clinical Trials

    Get PDF
    This manuscript presents findings from the first dichotomous data pooling analysis on clinical trials (CT) regarding the effectiveness of binding potassium. The results emanated from pairwise and network meta-analyses aiming evaluation of response to commercial potassium-binding polymers, that is, to achieve and maintain normal serum potassium (n = 1,722), and the association between this response and an optimal dosing of renin-angiotensin-aldosterone system inhibitors (RAASi) needing individuals affected by heart failure (HF) or resistant hypertension, who may be consuming other hyperkalemia-inducing drugs (HKID) (e.g., b-blockers, heparin, etc.), and frequently are affected by chronic kidney disease (CKD) (n = 1,044): According to the surface under the cumulative ranking area (SUCRA), sodium zirconium cyclosilicate (SZC) (SUCRA >0.78), patiromer (SUCRA >0.58) and sodium polystyrene sulfonate (SPS) (SUCRA 5.1 mEq/L), and, when normokalemia is achieved, patiromer 16.8–25.2 g/day (SUCRA = 0.94) and patiromer 8.4–16.8 g/day (SUCRA = 0.41) can allow to increase the dose of spironolactone up to 50 mg/day in subjects affected by heart failure (HF) or with resistant hypertension needing treatment with other RAASi. The potential of zirconium cyclosilicate should be explored further, as no data exists to assess properly its capacity to optimize dosing of RAASi, contrarily as it occurs with patiromer. More research is also necessary to discern between benefits of binding potassium among all type of hyperkalemic patients, for example, patients with DM who may need treatment for proteinuria, patients with early hypertension, etc.Fil: Lizaraso Soto, Frank. Universidad de Valladolid; EspañaFil: Gutiérrez Abejón, Eduardo. Universidad de Valladolid; EspañaFil: Bustamante Munguira, Juan. Universidad de Valladolid; EspañaFil: Martín García, Débora. Universidad de Valladolid; EspañaFil: Chimeno, María Montserrat. Hospital Virgen de la Concha; EspañaFil: Nava Rebollo, Álvaro. Hospital Virgen de la Concha; EspañaFil: Maurtua Briseño Meiggs, Álvaro. Woodland Medical Practicenhs; Reino UnidoFil: Fernández, Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Cuyo; Argentina. Universidad de Burgos. Departamento de Didácticas Específicas; EspañaFil: Bustamante Munguira, Elena. Universidad de Valladolid; EspañaFil: de Paz, Félix Jesús. Universidad de Valladolid; EspañaFil: Grande Villoria, Jesús. Universidad de Valladolid; España. Universite de Lausanne; SuizaFil: Ochoa Sangrador, Carlos. Sanidad de Castilla y León; EspañaFil: Pascual, Manuel. Universite de Lausanne; SuizaFil: Álvarez, F. Javier. Universidad de Valladolid; EspañaFil: Herrera Gómez, Francisco. Universite de Lausanne; Suiza. Universidad de Valladolid; Españ

    IRE1α-XBP1 Activation Elicited by Viral Singled Stranded RNA via TLR8 May Modulate Lung Cytokine Induction in SARS-CoV-2 Pneumonia

    Get PDF
    Initial symptoms of COVID-19 infection depend on viral replication, while hyperinflammation is a hallmark of critical illness and may drive severe pneumonia and death. Among the mechanisms potentially involved in the hyperinflammatory state, we focused on the unfolded protein response, because the IRE1α-XBP1 branch can be activated as result of the endoplasmic reticulum stress produced by the overwhelming synthesis of viral components and synergizes with Toll-like receptor signaling to induce cytokine expression. Viral RNA may trigger the IRE1α-XBP1 branch via TLR7/8 activation and like TLR2 and TLR4 may underpin cytokine expression trough XBP1 splicing (sXBP1). The expression of IL1B, IL6, and TNF mRNA in bronchoalveolar aspirates (BAAs) were higher in COVID-19 patients under mechanical ventilation and intubation who showed sXBP1. The scrutiny of monocytic/macrophagic markers during active infection showed a reduction of those involved in antigen presentation and survival, as well as the IFN stimulated gene MX1. These changes reverted after infection tests turned negative. In contrast, the expression of the mRNA of the serine protease TMPRSS2 involved in S protein priming showed a high expression during active infection. TLR8 mRNA showed an overwhelming expression as compared to TLR7 mRNA, which suggests the presence of monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a positive-sense, single-stranded RNA (+ssRNA) like SARS-CoV-2 RNA, induced sXBP1 and the expression of IL-1β, IL-6, and TNFα at mRNA and protein levels. These responses were blunted by the IRE1α ribonuclease inhibitor MKC8866. Given the analogies between the results observed in BAAs and the effects induced by +ssRNA in MDDCs, IRE1α ribonuclease inhibition might be a druggable target in severe COVID-19 disease.This study was funded by Fondo COVID-19 del Instituto de Salud Carlos III/Junta de Castilla y Leon (N.F.). European Commission-NextGenerationEU, through CSIC's Global Health Platform (PTI Salud Global) (project SGL2103016) (M.S.C.). Plan Nacional de Salud y Farmacia Grant SAF2017-83079-R and Grant PID2020-113751RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 (M.S.C.). Junta de Castilla y Leon/Fondo Social Europeo Grants CSI035P17 (M.S.C.) and VA175P20 (N.F.). Proyecto SEAHORSE INFRARED: IR2020-1-UVA05 (JCyL).N

    Procalcitonin and C-reactive protein to rule out early bacterial coinfection in COVID-19 critically ill patients

    Full text link
    PurposeAlthough the prevalence of community-acquired respiratory bacterial coinfection upon hospital admission in patients with coronavirus disease 2019 (COVID-19) has been reported to be < 5%, almost three-quarters of patients received antibiotics. We aim to investigate whether procalcitonin (PCT) or C-reactive protein (CRP) upon admission could be helpful biomarkers to identify bacterial coinfection among patients with COVID-19 pneumonia.MethodsWe carried out a multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish intensive care units (ICUs). The primary outcome was to explore whether PCT or CRP serum levels upon hospital admission could predict bacterial coinfection among patients with COVID-19 pneumonia. The secondary outcome was the evaluation of their association with mortality. We also conducted subgroups analyses in higher risk profile populations.ResultsBetween 5 February 2020 and 21 December 2021, 4076 patients were included, 133 (3%) of whom presented bacterial coinfection. PCT and CRP had low area under curve (AUC) scores at the receiver operating characteristic (ROC) curve analysis [0.57 (95% confidence interval (CI) 0.51-0.61) and 0.6 (95% CI, 0.55-0.64), respectively], but high negative predictive values (NPV) [97.5% (95% CI 96.5-98.5) and 98.2% (95% CI 97.5-98.9) for PCT and CRP, respectively]. CRP alone was associated with bacterial coinfection (OR 2, 95% CI 1.25-3.19; p = 0.004). The overall 15, 30 and 90 days mortality had a higher trend in the bacterial coinfection group, but without significant difference. PCT & GE; 0.12 ng/mL was associated with higher 90 days mortality.ConclusionOur study suggests that measurements of PCT and CRP, alone and at a single time point, are not useful for ruling in or out bacterial coinfection in viral pneumonia by COVID-19

    Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study

    Get PDF
    Background: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. Methods: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero (2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. Findings: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16-0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26-0·57; p<0·0001, compared with the VIR-N1-Storm group). Interpretation: The presence of a so-called viral storm is associated with increased all-cause death in patients admitted to the intensive care unit with severe COVID-19. Preventing this viral storm could help to reduce poor outcomes. Viral storm could be an enrichment marker for treatment with antivirals or purification devices to remove viral components from the blood.This work was supported by grants from the Instituto de Salud Carlos III (FONDO-COVID19, COV20/00110, CIBERES, 06/06/0028; AT), Proyectos de Investigación en Salud (PI19/00590; JFB-M), Miguel Servet (CP20/00041; DdG-C), Sara Borrell (CD018/0123; APT), and Predoctorales de Formación en Investigación en Salud (FI20/00278; AdF). We also received funds from Programa de Donaciones Estar Preparados, UNESPA (Madrid, Spain), and from the Canadian Institutes of Health Research (CIHR OV2–170357; DJK and JFB-M), Research Nova Scotia, Li-Ka Shing Foundation (DJK), and finally by a Research Grant 2020 from ESCMID (APT). COV20/00110, PI19/00590, CP20/00041, CD018/0123, FI20/00278 were co-funded by European Regional Development Fund and European Social Fund (A way to make Europe, and Investing in your future). We thank the IRB-Lleida Biobank 119 (B.0000682) and Plataforma Biobancos PT17/0015/0027 in Lleida, the Hospital Clinic Barcelona (HCB)-IDIBAPS biobank in Barcelona, and the National DNA Bank and the Hospital Universitario de Salamanca biobank (both in Salamanca) for their logistical support with sample processing and storage. We are indebted to the Fundació Glòria Soler for its contribution and support to the COVIDBANK of HCBIDIBAPS Biobank. This work was not supported by any pharmaceutical company or other agency.S

    Impacto de la COVID-19 en los servicios de cirugía cardiovascular en España: Análisis de los grupos relacionados con el diagnóstico (Estudio SECCE-COVID-19 fase 2)

    Get PDF
    Introducción y objetivos La pandemia por COVID-19 causada por infección del virus SARS-CoV-2 ha saturado al sistema sanitario español, afectándose la atención de las enfermedades cardiovasculares. Queremos cuantificar el impacto de la pandemia en el número de las intervenciones quirúrgicas cardíacas analizando los grupos relacionados con el diagnóstico (GRD) más prevalentes de nuestra especialidad. Métodos A instancias de la Sociedad Española de Cirugía Cardiovascular y Endovascular, se solicitó a todos los centros nacionales que quisieron participar, los datos de los códigos de GRD números 162 (cirugía sobre válvulas cardíacas con infarto o diagnóstico complejo), 163 (cirugía sobre válvulas cardíacas sin infarto o diagnóstico complejo), 165 (bypass coronario con infarto o diagnóstico complejo), 166 (bypass coronario sin infarto o diagnóstico complejo) y 167 (otros procedimientos cardiotorácicos o vasculares torácicos) entre el 1 de marzo de 2020 y el 30 de septiembre de 2020 (siete meses), y como período control las mismas fechas de 2019. Resultados Se recibieron los datos de 24 hospitales, 22 públicos y dos privados. Existió un descenso global en el número de intervenciones del 30% (rango -19 a -42%, p < 0,001) de 4.648 en 2019 a 3.262 en 2020 (-1.386 de diferencia), siendo +7% para el GRD 162 (p = 0,500), -37% para el 163 (p = 0,001), -9% para el 165 (p = 0,304), -32% para el 166 (p = 0,001), y -16% para el 167 (p = 0,062). Conclusiones Existió un descenso global de cirugías estadísticamente significativo en 2020 del 30% respecto del 2019 entre el 1 de marzo y el 30 de septiembre

    A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study

    Get PDF
    Background: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. Methods: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Results: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. Conclusions: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.11 página

    Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study

    Get PDF
    Background: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. Methods: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero ([removed]2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. Findings: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16–0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26–0·57; p[removed]11 página

    Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID‑19

    Get PDF
    Background. COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. Methods. A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. Results. The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183–12.968], 0.025), viral RNA load (N1) (1.962 [1.244–3.096], 0.004); viral RNA load (N2) (2.229 [1.382–3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). Conclusions. SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.This work was supported by awards from the Canadian Institutes of Health Research, the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding initiative (CIHR OV2 – 170357), Research Nova Scotia (DJK), Atlantic Genome/Genome Canada (DJK), Li-Ka Shing Foundation (DJK), Dalhousie Medical Research Foundation (DJK), the “Subvenciones de concesión directa para proyectos y programas de investigación del virus SARS‐CoV2, causante del COVID‐19”, FONDO–COVID19, Instituto de Salud Carlos III (COV20/00110, CIBERES, 06/06/0028), (AT) and fnally by the “Convocatoria extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la fnanciación de proyectos de investigación en enfermedad COVID-19” (GRS COVID 53/A/20) (CA). DJK is a recipient of the Canada Research Chair in Translational Vaccinology and Infammation. APT was funded by the Sara Borrell Research Grant CD018/0123 funded by Instituto de Salud Carlos III and co-fnanced by the European Development Regional Fund (A Way to Achieve Europe programme). The funding sources did not play any role neither in the design of the study and collection, not in the analysis, in the interpretation of data or in writing the manuscript
    corecore