125 research outputs found

    Microvascular complications in South African patients with long duration diabetes mellitus

    Get PDF
    Objective. To determine the prevalence of microvascular complications in South African black and Indian patients with long-duration diabetes mellitus (DM).Design. A retrospective analysis was undertaken of clinical records of 219 OM patients (132 black, 87 Indian) with longduration OM (over 10 years) attending a diabetes clinic in Durban. Data recorded on each subject included demographic details (age, gender, ethnic group, type of diabetes, age of onset and duration of diabetes), presence of retinopathy, markers of nephropathy and biochemical variables. The prevalence of complications and the clinical and biochemical parameters were evaluated for type 1 and type 2 diabetes and for each ethnic group.Results. Of the 219 patients, 47 had type 1 OM (36 blacks, 11 Indians) and 172 were classified as type 2 OM (96 blacks, 76 Indians). The mean age of onset of OM wa later in blacks than Indians, both for type 1 (P < 0.05) and type 2 OM (P < 0.01). In patients with type 1 OM, the prevalence of retinopathy was 53.2% (blacks 55.6%, Indians 45.5%), persistent proteinuria was found in 23.4% (blacks 25%, Indians 18.2%) and hypertension in 34%. 0 ethnic difference was found except for the prevalence of hyperten ion which was higher in blacks than Indians (41.7% v. 9.1%, P < 0.5). Onset of retinopathy from time of diabetes diagno is occurred earlier in blacks than Indians (13.0 ± 4.6 yrs v. 18.0 ± 4.6 yrs, P < 0.05). For the type 2 DM group, retinopathy was found in 64.5% (black v. Indian 68.8 v. 59.2%) and per istent proteinuria in 25% (black v. Indian 30.2 v. 1 .4%). Hypertension wa observed in 68% and wa more prevalent in blacks (84.4 v. 47.,*%, P < 0.01) There was an earlier onset of retinopathy (P < 0,05) and hypertension (P < 0.01) from time of diabetes diagnosis in blacks than Indians. In the type 1 OM group retinopathy was a sociated with a ignificantly longer duration of diabetes (P < 0.05) and higher glycated haemoglobin (HbA1) (P < 0.05). For type 2 DM subjects there was a significant association between retinopathy and longer duration of diabetes (P < 0.05) and higher systolic blood pressure (P < 0.05).Conclusion. 1his study has shown that there is a high prevalence of microvascular complications in South African patients with long-duration diabetes mellitus

    Effects of ACTH, dexamethasone, and adrenalectomy on 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) gene expression in the rat central nervous system

    Get PDF
    Using a highly sensitive quantitative RT-PCR method for the measurement of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) mRNAs, we previously demonstrated that CYP11B2 expression in the central nervous system (CNS) is subject to regulation by dietary sodium. We have now quantified the expression of these genes in the CNS of male Wistar Kyoto (WKY) rats in response to systemic ACTH infusion, dexamethasone infusion, and to adrenalectomy. CYP11B1 and CYP11B2 mRNA levels were measured in total RNA isolated from the adrenal gland and discrete brain regions using real-time quantitative RT-PCR. ACTH infusion (40 ng/day for 7 days, N=8) significantly increased CYP11B1 mRNA in the adrenal gland, hypothalamus, and cerebral cortex compared with animals infused with vehicle only. ACTH infusion decreased adrenal CYP11B2 expression but increased expression in all of the CNS regions except the cortex. Dexamethasone (10 μg/day for 7 days, N=8) reduced adrenal CYP11B1 mRNA compared with control animals but had no significant effect on either gene's expression in the CNS. Adrenalectomy (N=6 per group) significantly increased CYP11B1 expression in the hippocampus and hypothalamus and raised CYP11B2 expression in the cerebellum relative to sham-operated animals. This study confirms the transcription of CYP11B1 and CYP11B2 throughout the CNS and demonstrates that gene transcription is subject to differential regulation by ACTH and circulating corticosteroid levels

    Physiographic Controls on Landfast Ice Variability from 20 Years of Maximum Extents across the Northwest Canadian Arctic

    Get PDF
    Landfast ice is a defining feature among Arctic coasts, providing a critical transport route for communities and exerting control over the exposure of Arctic coasts to marine erosion processes. Despite its significance, there remains a paucity of data on the spatial variability of landfast ice and limited understanding of the environmental processes’ controls since the beginning of the 21st century. We present a new high spatiotemporal record (2000–2019) across the Northwest Canadian Arctic, using MODIS Terra satellite imagery to determine maximum landfast ice extent (MLIE) at the start of each melt season. Average MLIE across the Northwest Canadian Arctic declined by 73% in a direct comparison between the first and last year of the study period, but this was highly variable across regional to community scales, ranging from 14% around North Banks Island to 81% in the Amundsen Gulf. The variability was largely a reflection of 5–8-year cycles between landfast ice rich and poor periods with no discernible trend in MLIE. Interannual variability over the 20-year record of MLIE extent was more constrained across open, relatively uniform, and shallower sloping coastlines such as West Banks Island, in contrast with a more varied pattern across the numerous bays, headlands, and straits enclosed within the deep Amundsen Gulf. Static physiographic controls (namely, topography and bathymetry) were found to influence MLIE change across regional sites, but no association was found with dynamic environmental controls (storm duration, mean air temperature, and freezing and thawing degree day occurrence). For example, despite an exponential increase in storm duration from 2014 to 2019 (from 30 h to 140 h or a 350% increase) across the Mackenzie Delta, MLIE extents remained relatively consistent. Mean air temperatures and freezing and thawing degree day occurrences (over 1, 3, and 12-month periods) also reflected progressive northwards warming influences over the last two decades, but none showed a statistically significant relationship with MLIE interannual variability. These results indicate inferences of landfast ice variations commonly taken from wider sea ice trends may misrepresent more complex and variable sensitivity to process controls. The influences of different physiographic coastal settings need to be considered at process level scales to adequately account for community impacts and decision making or coastal erosion exposure

    Common Polymorphisms at the <i>CYP17A1 </i>Locus Associate With Steroid Phenotype:Support for Blood Pressure Genome-Wide Association Study Signals at This Locus

    Get PDF
    Genome-wide association studies implicate the CYP17A1 gene in human blood pressure regulation although the causative polymorphisms are as yet unknown. We sought to identify common polymorphisms likely to explain this association. We sequenced the CYP17A1 locus in 60 normotensive individuals and observed 24 previously identified single-nucleotide polymorphisms with minor allele frequency &gt;0.05. From these, we selected, for further studies, 7 polymorphisms located ≤2 kb upstream of the CYP17A1 transcription start site. In vitro reporter gene assays identified 3 of these (rs138009835, rs2150927, and rs2486758) as having significant functional effects. We then analyzed the association between the 7 polymorphisms and the urinary steroid metabolites in a hypertensive cohort (n=232). Significant associations included that of rs138009835 with aldosterone metabolite excretion; rs2150927 associated with the ratio of tetrahydrodeoxycorticosterone to tetrahydrodeoxycortisol, which we used as an index of 17α-hydroxylation. Linkage analysis showed rs138009835 to be the only 1 of the 7 polymorphisms in strong linkage disequilibrium with the blood pressure–associated polymorphisms identified in the previous studies. In conclusion, we have identified, characterized, and investigated common polymorphisms at the CYP17A1 locus that have functional effects on gene transcription in vitro and associate with corticosteroid phenotype in vivo. Of these, rs138009835—which we associate with changes in aldosterone level—is in strong linkage disequilibrium with polymorphisms linked by genome-wide association studies to blood pressure regulation. This finding clearly has implications for the development of high blood pressure in a large proportion of the population and justifies further investigation of rs138009835 and its effects

    Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonization

    Get PDF
    Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.</p

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Unexpected differential metabolic responses of Campylobacter jejuni to the abundant presence of glutamate and fucose

    Get PDF
    Introduction: Campylobacter jejuni is the leading cause of foodborne bacterial enteritis in humans, and yet little is known in regard to how genetic diversity and metabolic capabilities among isolates affect their metabolic phenotype and pathogenicity. Objectives: For instance, the C. jejuni 11168 strain can utilize both l-fucose and l-glutamate as a carbon source, which provides the strain with a competitive advantage in some environments and in this study we set out to assess the metabolic response of C. jejuni 11168 to the presence of l-fucose and l-glutamate in the growth medium. Methods: To achieve this, untargeted hydrophilic liquid chromatography coupled to mass spectrometry was used to obtain metabolite profiles of supernatant extracts obtained at three different time points up to 24 h. Results: This study identified both the depletion and the production and subsequent release of a multitude of expected and unexpected metabolites during the growth of C. jejuni 11168 under three different conditions. A large set of standards allowed identification of a number of metabolites. Further mass spectrometry fragmentation analysis allowed the additional annotation of substrate-specific metabolites. The results show that C. jejuni 11168 upon l-fucose addition indeed produces degradation products of the fucose pathway. Furthermore, methionine was faster depleted from the medium, consistent with previously-observed methionine auxotrophy. Conclusions: Moreover, a multitude of not previously annotated metabolites in C. jejuni were found to be increased specifically upon l-fucose addition. These metabolites may well play a role in the pathogenicity of this C. jejuni strain.</p

    Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa.

    Get PDF
    Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.Main funding: This work was funded by the Wellcome Trust, The Wellcome Sanger Institute (WT098051), the U.K. Medical Research Council (G0901213-92157, G0801566, and MR/K013491/1), and the Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS core funding
    corecore