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Plant pathogens deliver effectors to manipulate processes in their hosts, creating a suitable environment for invasion and proliferation.
Yet, little is known about the host proteins that are targeted by effectors from filamentous pathogens. Here, we show that stable
transgenic expression in potato (Solanum tuberosun) and transient expression in Nicotiana benthamiana of the arginine-any amino acid-
leucine-arginine effector Pi17316 enhances leaf colonization by the late blight pathogen Phytophthora infestans. Expression of Pi17316
also attenuates cell death triggered by the pathogen-associated molecular pattern Infestinl (INF1), indicating that the effector
suppresses pattern-triggered immunity. However, this effector does not attenuate cell death triggered by a range of resistance
proteins, showing that it specifically suppresses INF1-triggered cell death (ICD). In yeast two-hybrid assays, Pil7316 interacts
directly with the potato ortholog of VASCULAR HIGHWAY1I-interacting kinase (StVIK), encoding a predicted MEK kinase
(MAP3K). Interaction in planta was confirmed by coimmunoprecipitation and occurs at the plant plasma membrane. Virus-
induced gene silencing of VIK in N. benthamiana attenuated P. infestans colonization, whereas transient overexpression of StVIK
enhanced colonization, indicating that this host protein acts as a susceptibility factor. Moreover, VIK overexpression specifically
attenuated ICD, indicating that it is a negative regulator of immunity. The abilities of Pi17316 to enhance P. infestans colonization
or suppress ICD were compromised significantly in NbVIK-silenced plants, demonstrating that the effector activity of Pil7316 is

mediated by this MAP3K. Thus, StVIK is exploited by P. infestans as a susceptibility factor to promote late blight disease.

Plants have evolved a complex network of cross-
talking pathways to sense and respond appropriately to
their environment. These signaling networks are tightly
regulated to allow plants to fine-tune responses and to
limit energy expenditure to where it is needed most at
any given time (Koornneef and Pieterse, 2008; Rojas
etal., 2014). During plant immune responses, plants use
plasma membrane (PM)-localized pattern recognition
receptors (PRRs), including receptor-like kinases
(RLKs), to detect the earliest signatures of foreign
molecules or of cellular damage in the extracellular
environment (Ingle et al., 2006; Zipfel, 2008). These re-
ceptors recognize a wide variety of microbe- and
pathogen-associated molecular patterns (PAMPs) from
different possible invading organisms in a family- or
even species-specific manner. For example, transgluta-
minase GP42 (Niirnberger et al., 1994; Brunner et al.,
2002), CELLULOSE-BINDING ELICITOR LECTIN
(Mateos et al., 1997; Gaulin et al., 2006), and the elicitin
Infestinl (INF1; Derevnina et al.,, 2016) all can be
detected from oomycetes; B-glucan (Klarzynski et al.,

2000), chitin (Kaku et al.,, 2006), and ergosterol
(Laquitaine et al., 2006) from fungi; and lipopolysac-
charide, the translation elongation factor EF-Tu, and
flagellin from gram-negative bacteria (Niirnberger
et al., 2004; Niirnberger and Lipka, 2005). Recognition
of these conserved microbial molecules activates
pattern-triggered immunity (PTI).

The activation of PRRs usually requires a coreceptor
for downstream signaling to trigger PTI via MAPK
cascades (Ingle et al., 2006; Pitzschke et al., 2009).
PRR coreceptors, such as the SOMATIC EMBRYO-
GENESIS RECEPTOR-LIKE KINASE RLK family
member BRASSINOSTEROID INSENSITIVE1 (BRI1)-
Associated Receptor Kinase (BAK1), may play a role
in activating multiple signal transduction pathways
and could be a point of cross talk between different
pathways. For example, BAK1 is involved in the per-
ception of PAMPs to trigger PTI and the phytohormone
brassinosteroid (BR) by BRIl (He et al, 2000;
Kemmerling et al., 2007; Chinchilla et al., 2009;
Belkhadir et al., 2012). Typically, MAPKSs are organized
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in a hierarchical cascade in which a MAPK is activated
by a MAPK kinase (MAPKK, MEK, or MAP2K), which
itself is activated by a MAPKK kinase (MAPKKK,
MEKK, or MAP3K; Rodriguez et al., 2010). MAPKs
phosphorylate a number of different substrates, rang-
ing from transcription factors to RESPIRATORY BURST
OXIDASE HOMOLOG D, which produces reactive oxy-
gen species to induce defense responses (Asai et al., 2008).
The Arabidopsis (Arabidopsis thaliana) genome encodes
20 MAPKs, 10 MAP2Ks, and more than 80 MAP3Ks
(Pitzschke et al., 2009). MAP3Ks in plants are a heterog-
enous group that can be divided into three additional
subgroups. These are the MEKK (MAPK/ERK kinase
kinase)-like subgroup, which are mainly organized in
linear cascades and for which functional evidence
exists that they act as MAP3Ks in planta; and the Raf-
like and ZIK-like subgroups, which have a wide range
of protein substrates and for which functional charac-
terization comes largely from organisms other than
plants (MAPK Group, 2002; Colcombet and Hirt, 2008).
MAPK activation in PTI results in, among other things,
the phosphorylation of specific downstream transcrip-
tional activators (e.g. WRKY transcription factors) that
induce the expression of defense genes, such as those
producing antimicrobial peptides (Ingle et al., 2006;
Pitzschke et al., 2009).

One of the best characterized PTI signaling pathways
follows the recognition of flg22 (a 22-amino acid epi-
tope from bacterial flagellin). In Arabidopsis, the RLK
FLAGELLIN SENSITIVE2 (FLS2) complexes with
BAK1 to activate MAPK signaling (Chinchilla et al.,
2006, 2007). Early investigations found that the MAP3K
MEKK]1 activates the MAP2Ks MKK4 and MKKS5,
which, in turn, activate the MAPKs MPK3 and MPKG®6 to
positively regulate PTI responses. Genetic studies im-
plicate a second cascade involved in flg22 perception,
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consisting of MEKK1-MKK1/2-MPK4, that negatively
regulates plant defenses responses, although MEKK1
has not been shown to interact with FLS2 directly
(Suarez-Rodriguez et al.,, 2007; Gao et al., 2008). The
cross talk between the positive regulators MPK3/6 and
the negative regulation by MPK4 indicates that the
plant tightly controls defense responses to respond
appropriately to environmental challenges (Suarez-
Rodriguez et al., 2007).

Recognition of INF1 has been shown to be via a
receptor-like protein known as Elicitin-Response Re-
ceptor (ELR) in potato (Solanum tuberosum), and since
ELR has no kinase domain itself, it is hypothesized to
form complexes with other kinase domain-containing
proteins, such as SUPPRESSOR OF BIR1-1 and BAK1,
to transduce the signal (Du et al., 2015). INF1-triggered
cell death (ICD) is BAK1 dependent (Chaparro-Garcia
et al., 2011). As with fIg22, the detection of INF1 acti-
vates two MAPK cascades. One cascade involves a
currently unknown MAP3K and then the nucleus-
localized Nicotiana benthamiana MAP2K MKK1/MEK?2
(Takahashi et al., 2007; Asai et al., 2008), which interacts
physically with salicylic acid-induced protein kinase
(Zhang and Klessig, 1997). Interestingly, N. benthamiana
MEK?2 also is upstream of two other N. benthamiana
MAPKs (Yang et al., 2001), wound-induced protein
kinase (Seo et al., 1995, 1999) and NTF4 (Ren et al.,
2006). A second cascade triggered by INF1 also has
been identified that activates the MAP3K NPK1 (Jin
et al., 2002; Soyano et al., 2003) and, subsequently, the
MAP2K MEK1 and the MAPK NTEF6 (Asai et al., 2008).

It is commonly believed that well-adapted plant
pathogens and symbionts have evolved methods to
evade or overcome the PTI response in host plants in
order to successfully establish infection (Schulze-Lefert
and Panstruga, 2011). A key strategy is to deploy small,
secreted proteins, known as effectors, into the apo-
plastic space between cells or to deliver them inside
plant cells (Torufio et al., 2016). Therefore, effectors play
a critical role in aiding pathogenic organisms to over-
come PTI, leading to effector-triggered susceptibility.
Every species of plant-interacting microbe has evolved
at least one system to secrete effector proteins and
possesses a unique combination of effector proteins for
the suppression of immunity in a particular host or
hosts. There are many examples of bacterial effectors
that suppress PTI, such as the BAK1-targeting effec-
tors AvrPtoB and HopF2 (Lu et al., 2010; Zhou et al.,
2014) from Pseudomonas syringae pv tomato DC3000 and
the phosphothreonine lyase HopAl, which targets
the key Arabidopsis MAPKs MPK3, MPK4, and MPK6
(Zhang et al., 2007). Oomycete effectors that suppress PTI
responses also have been identified. The Phytophthora
infestans cytoplasmic Arg-any amino acid-Leu-Arg (RXLR)
effector Pi18215/SUPPRESSOR OF EARLY FLG22-
INDUCED IMMUNITY? (SFI7), in addition to sup-
pressing flg22-mediated MAPK activation, also can
partially suppress ICD (Zheng et al., 2014). ICD also can
be suppressed in N. benthamiana by additional P. infes-
tans effectors: AVR3a, through modulation of the
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ubiquitin E3 ligase CMPG1 (Bos et al., 2010; Gilroy
et al., 2011); Pi02860, through manipulation of NRL1,
another E3 ligase (Yang et al., 2016); and PiAVR2,
through activating the BR pathway (Turnbull et al.,
2017). AVR3a also can suppress cell death triggered by
the detection of the Cladosporium fulvum effectors AVR4
and AVR9 by tomato (Solanum lycopersicum) receptors
Cf4 and Cf9, respectively (Gilroy et al., 2011). Intrigu-
ingly, PexRD2, a P. infestans RXLR effector that targets
MAP3Ke, can suppress the BAKI1-dependent Cf4/
AVR4 cell death but not ICD (King et al., 2014; Postma
et al., 2016).

Recently, some P. infestans RXLR effectors were
shown to target negative regulators of immunity
that could be described as susceptibility (S) factors
(Boevink et al., 2016a; Whisson et al., 2016). These in-
clude Pi04089, which targets the RNA-binding protein
K-homology RNA-binding proteinl (Wang et al., 2015);
Pi04314, which targets three host protein phospha-
tase catalytic isoforms (Boevink et al., 2016b); and
Pi02860, which interacts with the predicted CULLIN3-
associated ubiquitin E3 ligase NRL1 in order to sup-
press ICD and promote infection (Yang et al., 2016).
More recently, we also showed that PIAVR2 up-regulates
a BR-responsive basic helix-loop-helix transcription
factor that suppresses immunity and is required for
infection (Turnbull et al., 2017).

In this study, we show that transient expression of
the RXLR effector PITG_17316 (Pil7316) in the model
host N. benthamiana, or stable transformation in potato
cv E3, enhances leaf colonization by P. infestans. Ex-
pression of the effector in N. benthamiana revealed that it
localizes to the PM and suppresses ICD. Pi17316 inter-
acts with a potato MAP3K that is a candidate ortholog
of Arabidopsis VASCULAR HIGHWAY1 (VHI)-
INTERACTING KINASE (VIK) in a yeast two-hybrid
(Y2H) library screen and in planta by coimmunopreci-
pitation and bimolecular fluorescence complementa-
tion (BiFC) assays. Virus-induced gene silencing (VIGS)
of NbVIK attenuated P. infestans colonization of N.
benthamiana. In contrast, overexpression of potato
StVIK enhances P. infestans colonization and suppresses
ICD, indicating that StVIK is a negative regulator of
plant immunity. Importantly, VIGS of NbVIK prevented
the suppression of ICD by Pi17316, whereas ICD sup-
pression by AVR3a was unaltered. Finally, Pil7316
could no longer enhance P. infestans colonization in the
NbVIK-silenced background, indicating that VIK is re-
quired for the effector to assist infection and, thus, that it
is an S factor exploited by the pathogen.

RESULTS AND DISCUSSION

Pi17316 Promotes P. infestans Virulence in N. benthamiana
and Potato

The gene Pi17316 (PITG_17316) is annotated in the
P. infestans genome as encoding a secreted RXLR-type
effector protein (Haas et al,, 2009). Consistent with

400

other RXLR effectors, Pi17316 is up-regulated by dis-
tinct genotypes of P. infestans during the biotrophic
phase of infection on potato plants (Haas et al., 2009;
Cooke et al., 2012; Supplemental Fig. S1). Pi17316 was
cloned (excluding the signal peptide) into a destination
vector that fuses GFP to the N terminus and coex-
pressed with an empty vector (EV) expressing free
monomeric Red Fluorescent Protein (mRFP). Intact
GFP-Pi17316 (Supplemental Fig. S2) was observed to
localize at the plant PM, whereas free mRFP was cyto-
solic (Fig. 1, A and B).

As demonstrated previously for other RXLR effectors
(McLellan et al., 2013; Boevink et al., 2016b; Yang et al.,
2016; Turnbull et al., 2017), transient expression of GFP-
Pi17316 in N. benthamiana was found to promote sig-
nificantly faster developing P. infestans lesions com-
pared with an empty GFP control (ANOVA, P < 0.001;
Fig. 1C). To explore this phenomenon further in potato
plants, transgenic potato cv E3 lines were generated
with constitutive 35S promoter-driven expression of
Pi17316. Two cv E3 lines (A4 and A5) with detectable
Pi17316 transcript levels were selected (Supplemental
Fig. S3A). These plants were challenged with a mixture
of sporangia from two contemporary P. infestans iso-
lates (HB0914-2 and HB0916-2) as described by He et al.
(2015) to investigate the impact of constitutive Pi17316
overexpression on colonization compared with cv E3
control plants at 5 dpi. P. infestans lesion size was en-
hanced significantly on both transgenic potato lines
compared with the cv E3 control (Fig. 1D; Supplemental
Fig. S3B).

Pi17316 Specifically Suppresses ICD

RXLR effectors can attenuate distinct defense sig-
naling pathways in planta (Bos et al., 2010; Gilroy et al.,
2011; King et al., 2014; Whisson et al., 2016). GFP-
Pi17316 was tested to determine if it suppressed cell
death signaling activated by two characterized path-
ways: ICD and the cell death triggered by coexpression
of the C. fulvum effector AVR4 and its cognate tomato
resistance protein Cf4. AVR3a was found to suppress
both ICD and Cf4/AVR4 cell death along with at least
one other cell death signaling event initiated at the plant
PM (PTO/AvrPTO). However, AVR3a had no impact
on ETI triggered by R3a/AVR3 or Rx/PVX Coat Pro-
tein (Gilroy et al., 2011). The expression of GFP-Pil7316
was found to significantly suppress ICD. However,
unlike AVR3a, Pi17316 had no significant effect on Cf4/
AVR4-triggered cell death (Fig. 2). This result is similar
to that of another RXLR effector, Pi02860, which can
suppress ICD but not Cf4/AVR4-triggered cell death
(Yang et al., 2016). In addition, Pi17316 was unable to
suppress cell death triggered by R3a/AVR3a, Rx/PVX-
CP, or PTO/AvrPTO (Supplemental Fig. 54). To further
test the potential suppression of PTI activated in the
absence of cell death, we treated leaves of the control cv
E3 and the 355:Pi17316 transgenic potato lines A4 and
A5 with flg22 and investigated the early-responsive
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Figure 1. Localization of GFP-Pi17316 and enhancement of P. infestans colonization. A, Transient coexpression of GFP-Pi17316
with an mRFP-EV construct as a cytoplasmic marker. Bar = 20 um. B, A plot of the profile indicated by the arrow in A shows GFP
fluorescence (green line) and mRFP signal (red line). C, Transient expression of GFP-EV and GFP-Pi17316 followed by the ad-
dition of a concentrated suspension of P. infestans isolate 88069 sporangia measured at 7 to 8 d post inoculation (dpi; mean of five
repetitions, 30 leaves per construct). *, Significant difference by one-way ANOVA using pairwise multiple comparison procedures
with the Holm-Sidak method (P = 0.001). D, Mean P. infestans lesion diameter of cv E3 and transgenic Pi17316-expressing potato
plants (A4 and A5) measured at 5 dpi (three repetitions, 40 leaves per line). *, Significance difference by one-way ANOVA using
pairwise multiple comparison procedures with the Holm-Sidak method (P = 0.001). Error bars in C and D show st.

genes StWRKY7, StWRKYS, and StACRE31 as de-
scribed previously (McLellan et al., 2013; Boevink et al.,
2016b). Transcripts of the three genes accumulated to
similarly high levels in cv E3, A4, and A5 only 30 min
after flg22 treatment (Supplemental Fig. S5). It can be
concluded that Pil7316 does not suppress early flg22-
responsive gene induction, suggesting that the function
of Pil7316 may be to specifically suppress signaling
pathway(s) triggered by the perception of elicitins such
as P. infestans INF1 and does not extend to other tested
PTI pathways or events that trigger cell death by the
activation of cell surface receptors or NB-LRR resistance
proteins.

Pi17316 Specifically Targets the Potato MAP3K, StVIK

To further explore the mechanism of Pil7316 action
in plants, a Y2H screen was performed to search for any
possible host protein targets of Pil7316 using a library
made from RNA extracted from P. infestans-infected

Plant Physiol. Vol. 177, 2018

potato leaf material as described previously (Bos et al.,
2010; McLellan et al., 2013; Wang et al., 2015; Boevink
et al., 2016b; Yang et al., 2016). Pil7316 was cloned
into a bait construct containing a GAL4 DNA-binding
domain and screened against the GAL4 activation
domain (prey)-containing library to a depth of 2.6 X 10°
cotransformants. Eighteen positive clones recovered
from selection plates yielded sequences with high ho-
mology to an Arabidopsis MAP3K, known as VIK
(At1g14000; Ceserani et al., 2009). The high conserva-
tion between Arabidopsis, potato, and N. benthamiana
VIK amino acid sequences is highlighted in Supplemental
Figure S6. To investigate the specificity of the interaction
between Pi17316 and StVIK, a pairwise Y2H assay was
performed with the full-length StVIK prey clones against
the Pil17316 bait or vice versa using two other RXLR ef-
fectors, PexRD2 (Pi11383) and SFI5 (Pi13628), as controls.
PexRD2 targets another MAP3K in the cytoplasm,
StMAP3Ke (King et al., 2014). SFI5 shows a similar PM
localization to Pi17316 and also enhances P. infestans leaf
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Figure 2. The effector Pi17316 inhibits ICD. A, Graph representing
mean inoculation sites developing ICD and Cf4/AVR4 hypersensitive
response (HR) lesions at 4 dpi when coinoculated with GFP-EV, GFP-
Pi17316, and GFP-AVR3a as a control that suppresses both ICD and
Cf4/AVR4. Data include five biological replicate experiments with six
plants per replicate and four inoculations per plant; error bars show s.
One-way ANOVA using pairwise multiple comparison procedures with
the Holm-Sidak method revealed that both ICD + Pi17316 and ICD +
AVR3a were significantly different from the GFP-EV (*, P=< 0.001). Only
GFP-AVR3a had a significant reduction in Cf4/AVR4 HR. B, Repre-
sentative leaf image displaying ICD with GFP-EV, GFP-Pi17316, and
GFP-AVR3a positive control at 5 dpi. C, Representative leaf image
displaying Cf4/AVR4 HR with GFP-EV, GFP-Pi17316, and GFP-AVR3a
positive control at 5 dpi.

colonization when transiently expressed in planta. Unlike
Pi17316, SFI5 suppresses early transcriptional responses
activated by the bacterial PAMP flg22 but does not sup-
press ICD (Zheng et al., 2014), suggesting that it does not
share a similar function. While all yeast transformants
grew on control plates, the interaction of Pil7316 with
StVIK was indicated by the induction of B-galactosidase
activity and growth on medium lacking His. The SFI5-
VIK and PexRD2-5tVIK combinations did not activate
either reporter (Fig. 3). In addition, whereas PexRD2
interacted with StMAP3Ke, no such interaction was ob-
served between Pi17316 and StMAP3Ke. These results
indicate interaction specificity, in that Pil7316 does not
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generally target MAP3Ks and StVIK does not appear
to be the target of another MAP3K-interacting effector,
PexRD2.

StVIK is a Raf-like MAP3K and a member of sub-
group C1 (MAPK Group, 2002). The C1 MAP3Ks are
characterized by the presence of an N-terminal ankyrin
repeat domain that facilitates protein-protein interac-
tions with a diverse range of protein substrates, making
a role in canonical MAPK cascades less likely (MAPK
Group, 2002). MAP3K C1 family members also are
mostly annotated as integrin-linked proteins with
largely unknown function. However, one C1 family
member, Integrin-Linked Kinasel (ILK1), was shown
recently to promote flg22 responses and resistance to
bacterial pathogens in Arabidopsis (Brauer et al., 2016).
Mammalian integrins have well-established roles in
mediating the interaction between the extracellular
matrix and the F-actin cytoskeleton (MAPK Group,
2002; Knepper et al., 2011), and the dysregulation of
integrins is associated with many diseases and cancers
(Sun et al., 2016; Paolillo and Schinelli, 2017). Arabi-
dopsis NDR1 is an example of a plant integrin-like
protein that plays well-characterized roles in ETI, in
fluid loss, and in PM-cell wall adhesion in both PTI and
broader stress responses (Knepper et al., 2011). Inter-
estingly, GFP-S5tVIK transient expression was found to
exhibit both cytoplasmic and nuclear localization
(Supplemental Fig. S7, A and B), which could fit with
the function of a protein with multiple and varied in-
teraction partners.

For confirmation that specific interaction between
Pi17316 and VIK occurs in planta, a coimmunopreci-
pitation experiment in N. benthamiana was performed
by coexpressing GFP-StVIK with cMyc-Pi17316, cMyc-
PexRD2, or cMyc-SFI5 using GFP-TRAP_M beads.
GFP-5tVIK and cMyc-labeled RXLR effector constructs
were all stable when transiently expressed in planta, as
indicated in the input samples. Only cMyc-Pi17316 was
coimmunoprecipitated by GFP-StVIK, and not the
cMyc-PexRD2 or cMyc-SFI5 controls (Fig. 4).

In order to determine where the interaction between
Pi17316 and StVIK takes place within the plant cell, a
BiFC assay was performed using PexRD2 and
StMAP3Ke as controls. The C-terminal fragment of YFP
(YC) was fused to StVIK while the N-terminal fragment
(YN) was fused to Pil17316, to give YC-StVIK and
YN-Pi17316, respectively. The fluorescence generated
by BiFC between YN-Pi17316 and YC-StVIK occurred
at the host cell PM (Fig. 5; Supplemental Fig. S7, C and
D), whereas the fluorescence generated by the coex-
pression of YN-PexRD2 and YC-StMAP3Ke was cyto-
plasmic (Supplemental Fig. S7, E and F), as shown
previously (King et al., 2014). In contrast, YFP fluores-
cence was barely detectable following the coexpression
of either YN-PexRD2 with YC-StVIK or YN-Pil7316
with YC-StMAP3Ke (Fig. 5). The YN-Pil7316 and
YC-5tVIK fusion constructs were shown to be intact in
planta by immunoblotting (Supplemental Fig. S7G).
The failure to reconstitute YFP fluorescence by BiFC
with Pi17316 and MAP3Ke confirms previous findings
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Figure 3. Pi17316 specifically targets the potato MAP3K, StVIK. Yeast coexpressing Pi17316 and the MAP3K StVIK, but not the
target of PexRD2, MAP3Ke, grew on His selection (—His) medium, uracil selection (—Ura) medium, and yielded B-galactosidase
(B-Gal) activity. In addition, another PM-localized effector, SFI5, does not interact with StVIK.

from the Y2H and coimmunoprecipitation experiments
(Figs. 3 and 4). Figure 5D shows cells coexpressing GFP-
Pi17316 and mRFP-StVIK to different levels. Whereas
mRFP-5tVIK shows cytoplasmic localization (cell 1)
when coexpressed with a low level of GFP-Pil7316,
a high level of GFP-Pi17316 (cell 2) results in a stron-
ger association of mRFP-StVIK with the PM. The
interaction of Pi17316 and StVIK at the PM connects to
the putative function of VIK as an interactor of
PM-associated RLKs, such as BRL2/VH1 (Ceserani
et al., 2009), or other membrane-bound proteins, such
as calmodulin-like proteins and transporters, as is the
case for the related C1 family member ILK1 (Wingenter
et al., 2011; Brauer et al., 2016).

In Arabidopsis, VIK is one of 66 proteins that are
candidate interactors with the activated (phosphory-
lated) cytoplasmic domain of VH1/BRL2 (Ceserani
et al., 2009). The other VH1/BRL2 interactors had an-
notated functions in protein degradation, vesicle traf-
ficking, and signal transduction. Intriguingly, BRL2 is
the only member of the BRIl-like subfamily of four
LRR-RLKSs that cannot directly bind BRs and cannot
complement the loss of other family members, ruling
out a direct role for VIK in BR perception (Clay and
Nelson, 2002; Cafio-Delgado et al., 2004). Nonetheless,
Arabidopsis vik mutants display distorted responses
to auxin and BRs (Ceserani et al., 2009). Thus, VIK
has been speculated to play a role as an adaptor pro-
tein, acting as a scaffold linking the signal detected
through VH1/BRL2 kinase to multiple targets (Ceserani
et al., 2009). More recently, a tonoplast monosaccharide
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transporter from Arabidopsis (AtTMT1) also was shown
to interact with VIK, implicating a further role in a
mechanism regulating plant vacuolar Glc uptake
(Wingenter et al., 2011). However, the PM-localized in-
teraction between Pil17316 and StVIK suggests that it is
less likely that P. infestans is trying to manipulate tono-
plast monosaccharide transport through Pil7316.
Therefore, we investigated what role VIK could play
during the colonization of host plants by P. infestans.

VIK Is an S Factor

MAP3Ks, such as StVIK, may be involved in a di-
verse variety of signal transduction cascades from the
plant PM to influence transcription in both growth
and/or defense pathways. In order to determine why
Pi1l7316 may be targeting VIK, two DNA fragments
were selected (NbVIK I and II), using alignments of
Arabidopsis, N. benthamiana, and potato VIK se-
quences, and cloned into a tobacco rattle virus (TRV)-
based VIGS vector for transient silencing (Liu et al,
2002; Supplemental Figs. S8 and S9). Knockdown of the
NbVIK transcript in VIGS plants was shown to be
around 80% compared with the transcript abundance in
TRV:GFP control plants (Supplemental Fig. S9B). Al-
though efficient silencing levels were achieved, there
was no detectable developmental phenotype observed
in the NbVIK VIGS plants (Supplemental Fig. S9C). We
showed that there was also no perturbation of the R3a-
and Cf4-based cell death following the silencing of
NbVIK, which is consistent with earlier observations
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Figure 4. StVIK interacts with Pi17316 in planta. Coimmunoprecipi-
tation (Co-IP) of protein extracts from agroinfiltrated leaves using GFP-
Trap confirmed that GFP-tagged StVIK associated specifically with
cMyc-Pi17316 and not with the cMyc-PexRD2 and cMyc-SFI5 controls.
The expression of constructs in the leaves is indicated by +. Protein size
markers are indicated in kD, and protein loading is indicated by Pon-
ceau stain (PS).

that Pi17316 had no influence on these immune path-
ways (Supplemental Fig. S9D). Unexpectedly, NbVIK
VIGS also had no measurable effect on ICD compared
with the GFP control plants. Interestingly, however,
measurements of both P. infestans lesion size and spo-
rangia development on TRV:GFP- and TRV:NbVIK I-
and Il-expressing N. benthamiana revealed that silencing
of NbVIK significantly reduced P. infestans coloniza-
tion (Fig. 6). This indicates that VIK is required for in-
fection by P. infestans and that it may be regarded as a
host S factor. S factors can play multiple roles for the
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pathogen, such as in early pathogen establishment,
pathogen sustenance, or suppression of immunity (van
Schie and Takken, 2014). Since Pil7316 expression in
planta suppressed ICD and boosted P. infestans, we next
examined a possible role of VIK in plant immunity
through transient overexpression.

Overexpression of VIK Perturbs ICD and Boosts
P. infestans Colonization

To determine whether VIK’s role as an S factor in-
volves suppressing host immunity, GFP-StVIK was
transiently coexpressed with INF1, R3a/AVR3a, and
Cf4/AVR4 to examine the effect on these cell death
pathways. Our data show that, like Pil7316, StVIK
overexpression attenuated ICD but had no effect on
R3a- and Cf4-based cell death (Fig. 7A). Both expression
of the effector and the host target gave similar immu-
nity phenotypes, implying that Pi17316 is unlikely to
inhibit StVIK activity. We can conclude that StVIK, like
Pi17316, behaves as a negative regulator of specific
pathways in plant immunity. Therefore, the VIGS of
NbVIK would accelerate ICD. However, it is possible
that the silencing was insufficient to reveal enhanced or
accelerated ICD. Overexpression of GFP-StVIK en-
hanced the ability of P. infestans isolate 88069 to colo-
nize N. benthamiana compared with an EV control (Fig.
7B). This evidence strengthens our conclusion that
StVIK acts as an S factor that negatively regulates im-
munity, although its exact mode of action remains
elusive. As StVIK is the sole target of Pi17316, we next
examined Pil17316 effector activity in the absence of
VIK.

Pi17316 Requires VIK to Enhance Pathogen Colonization
and Suppress ICD

As the transient expression of either Pi17316 or StVIK
provided a benefit for P. infestans growth on host plants,
we examined whether Pil17316 requires StVIK for this
function. We performed infection assays following the
transient expression of GFP-EV or GFP-Pi17316 in the
TRV:GFP and TRV:NbVIK I and II VIGS backgrounds
and examined the effect on P. infestans 88069’s ability to
colonize N. benthamiana plants. We observed that the
control effector PexRD2 was able to significantly en-
hance P. infestans colonization regardless of NbVIK si-
lencing. Crucially, we saw that Pi17316 was no longer
able to enhance P. infestans colonization in the NbVIK
VIGS background, whereas it did in the TRV:GFP
control, indicating that Pil7316 requires the presence of
StVIK for its role in virulence (Fig. 8A). As transient
expression of Pi17316 or StVIK suppresses ICD, we next
examined if Pi17316 could perturb ICD in the absence of
VIK. We found that Pil7316 was no longer able to
suppress ICD when NbVIK transcript levels were re-
duced significantly. However, the ability of AVR3a
to suppress ICD in the NbVIK background was

Plant Physiol. Vol. 177, 2018

Downloaded from on February 8, 2019 - Published by www.plantphysiol.org
Copyright © 2018 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org/cgi/content/full/pp.18.00028/DC1
http://www.plantphysiol.org

>
o1}

- - N N
o L] o [

Number of fluorescent cells per image
wn

b
. :
YN-PexRD2 YN-Pi17316 YN-PexRD2
+YC-StVIK + YC-SIMAP3Ke + YC-SIMAP3Ke

YN-Pi17316
+ YC-StVIK

GFP-Pi17316 mRFP-StVIK

YN-Pif7316 + YC-StVIK
+ free mRFP

RXLR Effector Pil17316 Targets the MAP3K StVIK

9]

Fluorescence Intensity Value

20 U
1 ANJLN\L. J\J\m_-..ﬂlt.f\.,,m.j
0 5 10 15 20 25

30

Distance across profile marker (uM)

Figure 5. Pi17316 interacts with StVIK at the plant PM. A, Average number of fluorescent cells per image with YN-Pi17316 +
YC-StVIK and YN-PexRD2 + YC:SIMAP3Ke, giving significantly more (P =< 0.050, n= 10) reconstitution of YFP fluorescence than
when noninteracting effector-interactor pairs (YN-PexRD2 + YC-StVIK and YN-Pi17316 + YC-SIMAP3Ke) were used. Lowercase
letters denote statistically significant groups by one-way ANOVA, with pairwise comparisons performed with the Holm-Sidak
method. Error bars show sk. B, Single optical slice image across PMs of two adjacent cells in the location indicated by the white
arrow coexpressing YN-17316 + YC-StVIK and the free mRFP cytoplasmic marker. Bar = 20 um. C, The plot of the profile in-
dicates that the majority of the YFP fluorescence (yellow line) does not colocalize with the cytoplasmic marker (red line). D, GFP-
Pi17316 coexpressed with mRFP-StVIK were imaged sequentially and merged using Omero software (https:/www.
openmicroscopy.org). Images were collected at 3 dpi at 40X magnification. 1 represents a cell where StVIK is present with little
GFP-Pi17316, 2 represents a cell where both mRFP-VIK and GFP-17316 are expressed to similar levels, and n highlights the

nucleus in cell 1. Bars 20 um.

unaffected, indicating that the silencing of NbVIK spe-
cifically prevents the function of Pi17316 (Fig. 8B). This
also may suggest that AVR3a acts downstream of
Pi17316 to suppress ICD, perhaps consistent with its
broader role in suppressing other immune responses,
including Cf4-mediated cell death. AVR3a likely acts
below a convergence point in these cell death signaling
pathways.

The finding that Pi17316 interacts with a MAP3K in
order to utilize or promote its ability to negatively
regulate immunity shares similarities with the viru-
lence function of the PM-localized P. syringae effector
AvrB (Cui et al., 2010). Until publication of that study,
plant pathogenic bacterial effectors were widely
reported to block immune responses by inhibiting or
degrading host target proteins required for plant im-
munity. Similarly, in oomycetes, various effectors
suppress positive regulators of immunity, such as

Plant Physiol. Vol. 177, 2018

PexRD2 (King et al., 2014). However, AvrB targets and
activates MPK4 to enhance plant susceptibility to the
benefit of the bacterium (Cui et al., 2010). Similarly,
Pi17316 targets StVIK, a negative regulator of plant
defenses, presumably to activate it or to direct its ac-
tivity to certain substrates. Future work will reveal the
precise nature and consequences of Pi17316 interaction
with StVIK upon the latter’s kinase activity and sub-
strate specificity.

To investigate the role of StVIK as an endogenous
negative regulator of immunity, future work will focus
on identifying its substrates. Existing literature impli-
cates the BRI1-like receptor VH1/BRL2 as an interactor
of VIK (Ceserani et al., 2009). Although silencing NbVIK
did not measurably alter growth and development, it
would be interesting to examine its role in regulating
BR responses. It is possible that, through this route,
Pi17316 could take advantage of antagonistic cross talk
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Figure 6. VIK is an S factor. A, Mean P. infestans lesion diameter (mm)
on TRV:GFP, TRV:VIK I, and TRV:VIK Il VIGS plants at 7 dpi. Error bars
represent se. One-way ANOVA using pairwise multiple comparison
procedures with the Holm-Sidak method revealed that TRV:GFP was
significantly different from the lesion diameters measured for TRV:VIK |
and TRV:VIK I VIGS (¥, P = 0.001). B, Mean P. infestans spore counts
per mL, washed from pools of TRV-infected leaves of each construct at
7 dpi. Error bars represent se. One-way ANOVA using pairwise multiple
comparison procedures with the Holm-Sidak method revealed that the
sporangia count from TRV:GFP control plants was significantly different
from the sporangia measured from TRV:NbVIK | and TRV:NbVIK Il VIGS
plants (*, P = 0.050).

between the BR pathway and immunity, similar to the
P. infestans effector AVR2 (Turnbull et al., 2017). How-
ever, as a Raf-like C1 MAP3K family member, interac-
tions between StVIK and membrane-associated
integrins also should be investigated (MAPK Group,
2002). Arabidopsis NDRI1 is an integrin-like protein
with well-characterized roles in immunity (Knepper
et al., 2011), demonstrating that integrins may be valid
targets to manipulate the regulation of disease resis-
tance. As Pi17316 exclusively suppresses ICD, interac-
tion with an integrin specifically associated with this
immune pathway is possible. However, potential in-
teractions between StVIK and the elicitin receptor ELR
(Du et al., 2015), or signal transduction components
associated with ELR activity, also should be investi-
gated. Recently, a C1 MAP3K family member was
shown to positively regulate immunity, promoting
flg22-elicited PTI (Brauer et al, 2016). Conversely,
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StVIK reveals that C1 family members also can act as
negative regulators of immunity.

A previous functional screen identified eight P.
infestans SFI RXLR effectors that could significantly
suppress flg22-dependent PTI reporter activation in
tomato protoplasts (Zheng et al., 2014). This demon-
strates that there is likely significant functional redun-
dancy in the P. infestans effector repertoire. In support
of this, through independent investigations, at least
five P. infestans RXLR effectors have been identified,
AVR3a, AVR2, Pi02860, SFI7/ Avr3b, and now Pi17316,
which suppress ICD. AVR3a has been shown to be es-
sential for full pathogenicity (Bos et al., 2010). Future

GFP-EV GFP-StVIK
120 - = .
100 -
80 -

*

Mean inoculation sites
developing HR (%)
(=]
o

20 -
0 I |
INF1 R3a/AVR3a Cf4/AVR4

B C
£ 18, GFP:EV. 'l GFP-StVIK
£ * 1
8
2 12
5
o
5
% 6
3
s
P
=

0-
GFP-EV GFP-StVIK

Figure 7. StVIK overexpression perturbs ICD and boosts P. infestans
colonization of N. benthamiana. A, Average inoculations developing
hypersensitive response (HR) lesions at 4 dpi for INF1, R3a/AVR3a, and
Cf4/AVR4 (n = 128, 88, and 115, respectively) in seven biological
repetitions. Error bars represent se. One-way ANOVA using pairwise
multiple comparison procedures with the Holm-Sidak method revealed
that ICD + StVIK was significantly different from ICD + EV (*, P =
0.001). B, Average P. infestans lesion diameter (mm) on sites of transient
expression of either GFP-EV or GFP-5tVIK measured at 7 dpi. The total
number of samples per construct was measured (n = 160) in seven bi-
ological replicates. Error bars represent se. One-way ANOVA using
pairwise multiple comparison procedures with the Holm-Sidak method
revealed that P. infestans lesion diameter + StVIK was significantly
different from lesion diameter + EV (*, P = 0.001). C, Representative
image of P. infestans lesions at 7 dpi on sites of transient expression of
either GFP-EV or GFP-StVIK.
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Figure 8. Silencing of NbVIK attenuates the ability of Pi17316 to sup-
press ICD and enhance P. infestans colonization in plants. A, Mean P.
infestans lesion diameter measured at 7 dpi containing a sample
number of roughly 150 for each construct in each VIGS background
across four biological repetitions. Error bars represent se. One-way
ANOVA using pairwise multiple comparison procedures with the
Holm-Sidak method revealed that lesion diameter was significantly
reduced when Pi17316 was expressed in the NbVIK VIGS backgrounds
(a and b highlight two significance groups at P =< 0.001). B, Percentage
inoculations developing ICD in the presence of Pi17316 versus the EV
in each VIGS background. The results represent a sample size of
121 across eight biological repetitions. One-way ANOVA using pair-
wise multiple comparison procedures with the Holm-Sidak method
showed that ICD was significantly higher in the GFP-Pi17316-inocu-
lated NbVIK VIGS backgrounds than in the TRV:GFP background (a and
b highlight two significance groups at P = 0.001).

work will reveal whether Pil17316 and these other ef-
fectors are essential, given their redundant function
in suppressing ICD. The known host protein interactors
of these play distinct roles in regulating plant de-
fense. AVR3a targets the ubiquitin E3 ligase CMPG1,
which has been shown to be necessary for multi-
ple cell death events, including ICD (Bos et al., 2010;
Gilroy et al., 2011). AVR2 interacts with the Ser/Thr
phosphatase BSL1, which is a positive regulator of
growth and development controlled by the BR signal-
ing cascade (Saunders et al., 2012). AVR2 perturbs
ICD through up-regulation of the transcription factor
StCHLI1 (Turnbull et al., 2017), potentially through its
interaction with BSL1. NRL1 is a CULLIN3-associated
ubiquitin E3 ligase targeted by effector Pi02860 that
appears to be an S factor that can suppress ICD (Yang
et al., 2016). The importance of elicitin perception in
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triggering defense to P. infestans has been demonstrated
by transgenic overexpression of the corresponding re-
ceptor, ELR, leading to enhanced immunity (Du et al.,
2015). It is perhaps unsurprising that multiple RXLR
effectors with distinct host targets are employed to act
redundantly to suppress ICD. Here, we have shown
that Pi17316 targets StVIK, a MAP3K that also is an S
factor and a negative regulator of ICD.

MATERIALS AND METHODS
Vector Construction

The Phytophthora infestans putative RXLR effector gene Pi17316 was ampli-
fied with attB sites from cDNA generated from isolate 88069 to recombine into
pDONR201 (Invitrogen) to generate entry clones. To make the stable over-
expression vector PRI101-Pil7316, the effector was amplified with primers
containing BamHI and Ndel restriction sites and ligated into PRI101 using
standard molecular biology techniques. The effector entry clones were recom-
bined with pDEST32 (for Y2H; Invitrogen) and pB7WGF2 (for N-terminal EGFP
fusion; Karimi et al., 2002). The effector entry clones also were recombined with
pCL112 (for N-terminal YN fusion) or pCL113 (for N-terminal YC fusion) for
BiFC (Bos et al., 2010) and with pGWB18 (for N-terminal tagging with the cMyc
epitope; Nakagawa et al., 2007).

The full-length potato (Solanum tuberosum) VH1-interacting kinase was re-
trieved from pDEST32 (bait) of the original Y2H screen. The initially amplified
coding sequence was amplified from potato cDNA with flanking attB sites. It
was then modified to include an in planta spliceable intron 5 to make vector
construction more stable in bacteria, and these products were recombined into
pDONR201 (Invitrogen) to generate entry clones using the Gateway (Invi-
trogen) primer sequences shown in Supplemental Table S1. The StVIK was then
recombined into pDEST22 (Y2H prey), pB7WGEF2 (for N-terminal eGFP fusion;
Karimi et al., 2002), and pCL112 (for N-terminal YN fusion).

Potato Transformation

The Agrobacterium tumefaciens-containing overexpression vector PRI101-
Pil7316 was transformed into the potato cv E3 by microtuber disc transfor-
mation as described by Yang et al. (2016). Positive lines were confirmed by PCR
with the forward primer of the 35S promotor and the gene-specific reverse
primer of Pi17316. The presence and expression level of the transgene were
analyzed by semiquantitative PCR (primers are shown in Supplemental Table
S1). Seven-week-old potato plants were used for P. infestans inoculations.

Plant Production and Maintenance

Potato overexpression lines were grown in glasshouses in 16-h days at 22°C.
Supplemental light was provided when the ambient light dropped below 200 W
m !, and shading was provided when it was above 450 W m'. For transient
overexpression assays, Nicotiana benthamiana plants were grown in general
purpose compost under long-day glasshouse conditions of 16 h of light at 22°C,
light intensity of 130 to 150 mE m *s ™", and 40% humidity unless stated oth-
erwise. N. benthamiana was used for A. tumefaciens infiltration/P. infestans col-
onization at 4 to 5 weeks old or at the four-leaf stage for VIGS experiments.

Agroinfiltration and Infection Assays

A. tumefaciens strain AGL1 transformed with vector constructs was grown
overnight in YEB medium containing selective antibiotics at 28°C, pelleted,
resuspended in infiltration buffer (10 mm MES and 10 mm MgCl acetosyr-
ingone), and adjusted to the required ODyy, before infiltration into N. ben-
thamiana leaves (generally 0.005 to 0.01 for imaging purposes, 0.002 for BiFC, 0.1
for infection assays, and 0.5 for hypersensitive response assays). For coex-
pression, A. tumefaciens cultures carrying the appropriate vector constructs
were mixed prior to infiltration. P. infestans strain 88069 was used for plant
infection and was cultured on rye (Secale cereale) agar at 19°C for 2 weeks. Plates
were flooded with 5 mL of sterile water and scraped with a glass rod to release
sporangia. The resulting solution was collected in a Falcon tube, sporangia
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numbers were counted using a hemocytometer and adjusted to 50,000 mL ™",
and 10-mL droplets were inoculated onto the abaxial side of leaves of intact N.
benthamiana plants stored on moist concertinaed tissue in sealed boxes. The
lesions were measured at 6 to 7 dpi. For VIGS plants, the average lesion di-
ameter was measured and compared with that of the GFP control plants at
7 dpi. A. tumefaciens transient assays in combination with P. infestans infection
were carried out as described (McLellan et al., 2013). Cell death assays were
performed and recorded as described previously using one-way ANOVA to
assess statistical significance (Gilroy et al., 2011).

Confocal Imaging

N. benthamiana cells were imaged at 2 dpi using Leica TCS SP2 AOBS, Zeiss
710, and Nikon A1R confocal microscopes with Leica HCX PL APO Ibd.BL 3/
1.20 W and L 403/0.8, Zeiss PL APO 403/1.0, or Nikon 603/water-dipping
objectives. GFP was excited by the 488-nm line of an argon laser, and emis-
sions were detected between 500 and 530 nm. mRFP was excited with 561 nm,
and its emissions were detected between 600 and 630 nm. The pinhole was set to
1 airy unit for the longest wavelength fluorophore. Single optical section images
and z-stacks were collected from leaf cells expressing low levels of the protein
fusions to minimize the potential artifacts of ectopic protein expression. Images
were projected and processed using the Leica LCS, Zen 2010, and NIS-Elements
software packages. Subsequent image processing for figure generation was
conducted with Adobe Photoshop CS2 and Adobe Illustrator. The
m-Turquoise-Lti6b, histone 2B fused to mRFP, and free RFP markers used were
described previously (Kurup et al., 2005; Goedhart et al., 2010; Wang et al.,
2017).

Y2H and Coimmunoprecipitation

A Y2H screen with pDEST32-Pi17316 was performed in Saccharomyces
cerevisiae strain MsV203 as described (McLellan et al., 2013) using the
Invitrogen ProQuest system. The full-length coding sequence of the candidate
interacting prey sequence, StVIK (accession no. PGSC0003DMC400049296/
PGSC0003DMT400072865), was cloned and retested with pDEST22-Pi17316;
pDEST22-PexRD2 and pDEST22:SFI5 were used as controls to rule out the
possibility that the observed reporter gene activation had resulted from inter-
actions between the prey and the DNA-binding domain of the bait construct or
the DNA-binding activity of the prey itself. A. tumefaciens strain AGL1 con-
taining the fusion protein constructs was grown overnight in YEB medium
containing selective antibiotics at 28°C, pelleted, resuspended in infiltration
buffer (10 mm MES, 10 mm MgCl, and 200 mm acetosyringone), and adjusted to
an OD of 0.5 before infiltration into N. benthamiana leaves. Forty-eight hours
post infiltration, samples were taken and proteins were extracted. GFP-tagged
StVIK fusions were immunoprecipitated using GFP-Trap-M magnetic beads
(Chromotek). The resulting samples were separated by PAGE and western
blotted. Immunoprecipitated GFP fusions and coimmunoprecipitated c-Myc
fusions were detected using appropriate antisera (Santa Cruz Biotechnology).

VIGS

VIGS constructs were made by cloning two 250-bp PCR fragments of NbVIK
(accession no. Niben101Scf00850g01028) from N. benthamiana cDNA and
cloning into pBinary TRV vectors (Liu et al., 2002) between Hpal and EcoRI sites
in the antisense orientation. BLAST analysis of this sequence against the P.
infestans genome (https://www.ncbinlm.nih.gov/bioproject/17665) did not
reveal any matches that could initiate silencing in the pathogen. A TRV con-
struct expressing GFP described previously was used as a control (McLellan
et al., 2013). Primer sequences are shown in Supplemental Table S1. The two
largest leaves of four-leaf-stage N. benthamiana plants were pressure infiltrated
with LBA4404 A. tumefaciens strains containing a mixture of RNA1 (OD = 0.4)
and each NbVIK VIGS construct or the GFP control at OD = 0.5 each. Plants
were used for assays or to check gene-silencing levels by reverse transcription
quantitative PCR 2 to 3 weeks later.

Gene Expression Assay
RNA was extracted using a Qiagen RNeasy Kit with on-column DNA digestion
steps according to the manufacturer’s instructions. First-strand cDNA was synthe-

sized from 2 mg of RNA using SuperScript I RNase HReverse Transcriptase
(Invitrogen) according to the manufacturer’s instructions. Detection and data
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acquisition were performed by reverse transcription quantitative PCR using Power
SYBR Green (Applied Biosystems) and run on a Chromo4-real time detector with a
PTC-200 thermal cycler (MJ Research) using Opticon Monitor 3.1.32 software (all
Bio-Rad Laboratories). Reactions were incubated at 95°C for 15 min before 40 cycles
of 95°C for 15 s and 60°C for 1 min and plate reading. A subsequent melting curve
was performed on every run: 58°C and 95°C, with plate read every 1°C and hold for
5. Data were analyzed using the Delta Delta Ct method (McLellan et al., 2013) with
expression normalized to a housekeeping gene (Actin A for P. infestans or Elongation
Factor 1a for N. benthamiana). Primer pairs (Eurofins MWG operon) were designed
outside the region of cDNA targeted for VIGS to avoid the detection of products
encoded in the viral vector. All primers are shown in Supplemental Table S1. Primer
design was based on sequence information from the Sol Genomics Network
(Fernandez-Pozo et al., 2015) at www.solgenomics.net and facilitated by the use of
Primer3 (Koressaar and Remm, 2007; Untergasser et al., 2012; http:/ /primer3.ut.ee/)
and NetPrimer software (Premier Biosoft).

Accession Numbers

Accession numbers are as follows: AtVIK, Atlgl400; StVIK,
PGSC0003DMC400049296/PGSC0003DMT400072865; and NbDVIK,
Niben1015¢f00850g01028.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Expression of Pi17316 in a P. infestans infection
time course on potato.

Supplemental Figure S2. Protein stability of GFP-Pi17316 in N. benthami-
ana.

Supplemental Figure S3. Stable expression of Pil7316 in potato and sus-
ceptibility to P. infestans.

Supplemental Figure S4. Cell death responses were not influenced by
transient expression of Pi17316.

Supplemental Figure S5. The flg22-induced PAMP response was not per-
turbed in transgenic Pi17316 potato cv E3.

Supplemental Figure S6. Sequence alignment of Arabidopsis, potato, and
N. benthamiana VIK1 proteins.

Supplemental Figure S7. Representative GFP-StVIK, BiFC images and
profiles, and construct stability.

Supplemental Figure S8. Nucleotide alignment of Arabidopsis, potato,
and N. benthamiana VIK sequences.

Supplemental Figure S9. NbVIK constructs, silencing efficiency pheno-
types, and cell death responses.

Supplemental Table S1. Primers used in this study.
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