17 research outputs found

    Intraoperative Corneal Thickness Changes during Pulsed Accelerated Corneal Cross-Linking Using Isotonic Riboflavin with HPMC.

    Get PDF
    Purpose. To evaluate corneal thickness changes during pulsed accelerated corneal cross-linking (CXL) for keratoconus using a new isotonic riboflavin formula. Methods. In this prospective, interventional, clinical study patients with grades 1-2 keratoconus (Amsler-Krumeich classification) underwent pulsed accelerated (30 mW/cm(2)) CXL after application of an isotonic riboflavin solution (0.1%) with HPMC for 10 minutes. Central corneal thickness (CCT) measurements were taken using ultrasound pachymetry before and after epithelial removal, after riboflavin soaking, and immediately after completion of UVA treatment. Results. Twenty eyes of 11 patients (4 males, 7 females) were enrolled. Mean patient age was 26 ± 3 (range from 18 to 30 years). No intraoperative or postoperative complications were observed in any of the patients. Mean CCT was 507 ± 35 μm (range: 559-459 μm) before and 475 ± 40 μm (range: 535-420 μm) after epithelial removal (P < 0.001). After 10 minutes of riboflavin instillation, there was a statistically significant decrease of CCT by 6.2% from 475 ± 40 μm (range: 535-420 μm) to 446 ± 31 μm (range: 508-400) (P < 0.005). There was no other statistically significant change of CCT during UVA irradiation. Conclusions. A significant decrease of corneal thickness was demonstrated during the isotonic riboflavin with HPMC application while there was no significant change during the pulsed accelerated UVA irradiation

    La fermentation du fromage égyptien "Mich"

    No full text

    Iron Requirement for Mn(II) Oxidation by Leptothrix discophora SS-1▿

    No full text
    A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 μM iron/5.8 mM pyruvate) and sufficient iron (0.2 μM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron

    Manufacture of egyptian, soft and pickled cheeses

    No full text
    corecore