42 research outputs found

    A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid

    Get PDF
    Nephron number varies widely between 0.3 and 1.3 million per kidney in humans. During fetal life, the rate of nephrogenesis is influenced by local retinoic acid (RA) level such that even moderate maternal vitamin A deficiency limits the final nephron number in rodents. Inactivation of genes in the RA pathway causes renal agenesis in mice; however, the impact of retinoids on human kidney development is unknown. To resolve this, we tested for associations between variants of genes involved in RA metabolism (ALDH1A2, CYP26A1, and CYP26B1) and kidney size among normal newborns. Homozygosity for a common (1 in 5) variant, rs7169289(G), within an Sp1 transcription factor motif of the ALDH1A2 gene, showed a significant 22% increase in newborn kidney volume when adjusted for body surface area. Infants bearing this allele had higher umbilical cord blood RA levels compared to those with homozygous wild-type ALDH1A2 rs7169289(A) alleles. Furthermore, the effect of the rs7169289(G) variant was evident in subgroups with or without a previously reported hypomorphic RET 1476(A) proto-oncogene allele that is critical in determining final nephron number. As maternal vitamin A deficiency is widespread in developing countries and may compromise availability of retinol for fetal RA synthesis, our study suggests that the ALDH1A2 rs7169289(G) variant might be protective for such individuals

    Genetic Analysis of 10 Unrelated Korean Families with p22-phox-deficient Chronic Granulomatous Disease: An Unusually Identical Mutation of the CYBA Gene on Jeju Island, Korea

    Get PDF
    Chronic granulomatous disease (CGD) is a rare hereditary disorder characterized by recurrent life-threatening bacterial and fungal infections. The underlying defect in CGD is an inability of phagocytes to produce reactive oxygen species as a result of defects in NADPH oxidase. Considering that CGD generally affects about 3-4 in 1,000,000 individuals, it is surprising that the prevalence of CGD on Jeju Island is 20.7 in 1,000,000 individuals. We performed genetic analysis on 12 patients from 10 unrelated families and found that all patients had an identical homozygous single-base substitution of C to T in exon 1 (c.7C>T) of the CYBA gene, which was expected to result in a nonsense mutation (p.Q3X). Because Jeju Island has long been a geologically isolated region, the high prevalence of CGD on Jeju Island is presumably associated with an identical mutation inherited from a common ancestor or proband

    Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro

    Get PDF
    Contains fulltext : 109597.pdf (publisher's version ) (Open Access)Cystinosis is a rare disease caused by homozygous mutations of the CTNS gene, encoding a cystine efflux channel in the lysosomal membrane. In Ctns knockout mice, the pathologic intralysosomal accumulation of cystine that drives progressive organ damage can be reversed by infusion of wildtype bone marrow-derived stem cells, but the mechanism involved is unclear since the exogeneous stem cells are rarely integrated into renal tubules. Here we show that human mesenchymal stem cells, from amniotic fluid or bone marrow, reduce pathologic cystine accumulation in co-cultured CTNS mutant fibroblasts or proximal tubular cells from cystinosis patients. This paracrine effect is associated with release into the culture medium of stem cell microvesicles (100-400 nm diameter) containing wildtype cystinosin protein and CTNS mRNA. Isolated stem cell microvesicles reduce target cell cystine accumulation in a dose-dependent, Annexin V-sensitive manner. Microvesicles from stem cells expressing CTNS(Red) transfer tagged CTNS protein to the lysosome/endosome compartment of cystinotic fibroblasts. Our observations suggest that exogenous stem cells may reprogram the biology of mutant tissues by direct microvesicle transfer of membrane-associated wildtype molecules

    Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia

    No full text
    International audienceNADPH oxidase, a multi-subunit protein consisting of cytosolic components and the membrane-bound heterodimer, plays an instrumental role in host defence mechanisms of phagocytes. Genetic deficiency of the enzymatic complex results in an inherited disorder, chronic granulomatous disease (CGD), which is characterized by an impaired phagocyte microbicidal activity. X-Linked (XL) CGD results from a mutation in the CYBB gene encoding the gp91phox subunit, while autosomal recessive (AR) CGD is associated with mutations in one of the NCF1, NCF2 and CYBA genes that encode the p47phox, p67phox and p22phox subunits, respectively. In the study reported here, we investigated genetic defects underlying CGD in 15 Tunisian patients from 14 unrelated families. Haplotype analyses and homozygosity mapping with microsatellite markers around known CGD genes assigned the genetic defect to NCF1 in four patients, to NCF2 in four patients and to CYBA in two patients. However, one family with two CGD patients seemed not to link the genetic defect to any known AR-CGD genes. Mutation screening identified two novel mutations in NCF2 and CYBA in addition to the recurrent mutation, Delta GT, in NCF1 and a splice site mutation previously reported in a North African patient. Our results revealed the genetic and mutational heterogeneity of the AR recessive form of CGD in Tunisia
    corecore