5 research outputs found

    Life-cycle assessment of yeast-based single-cell protein production with oat processing side-stream

    Get PDF
    Production of fish meal and plant-based feed proteins continues to increase to meet the growing demand for seafood, leading to impacts on marine and terrestrial ecosystems. Microbial proteins such as single-cell proteins (SCPs) have been introduced as feed alternatives since they can replace current fish feed ingredients, e.g., soybean, which are associated with negative environmental impacts. Microbial protein production also enables utilization of grain processing side-streams as feedstock sources. This study assesses the environmental impacts of yeast-based SCP using oat side-stream as feedstock (OS-SCP). Life-cycle assessment with a cradle-to-gate approach was used to quantify global warming, freshwater eutrophication, marine eutrophication, terrestrial acidification, land use, and water consumption of OS-SCP production in Finland. Dried and wet side-streams of oat were compared with each other to identify differences in energy consumption and transportation effects. Sensitivity analysis was performed to examine the difference in impacts at various locations and fermentation times. Benchmarking was used to evaluate the environmental impacts of OS-SCP and other feed products, including both conventional and novel protein products. Results highlight the importance of energy sources in quantifying the environmental performance of OS-SCP production. OS-SCP produced with dried side-streams resulted in higher global warming (16.3 %) and water consumption (7.5 %) than OS-SCP produced from wet side-streams, reflecting the energy and water requirements for the drying process. Compared with conventional products, such as soy protein concentrates, OS-SCP resulted in 61 % less land use, while exacerbating the environmental impacts in all the other categories. OS-SCP had more impact on global warming (205–754 %), water consumption (166–1401 %), freshwater eutrophication (118–333 %), and terrestrial acidification (85–340 %) than other novel products, including yeast protein concentrate, methanotrophic bacterial SCP, and insect meal, while lowering global warming (11 %) and freshwater eutrophication (20 %) compared with dry microalgae biomass.Peer reviewe

    Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions

    Get PDF
    Alternative sigma factors control numerous aspects of bacterial life, including adaptation to physiological stresses, morphological development, persistence states and virulence. This is especially true for the physiologically complex actinobacteria. Here we report the development of a robust gene deletions system for Streptomyces lividans TK24 based on a BAC library combined with the λ-Red recombination technique. The developed system was validated by systematically deleting the most highly expressed genes encoding alternative sigma factors and several other regulatory genes within the chromosome of S. lividans TK24. To demonstrate the possibility of large scale genomic manipulations, the major part of the undecylprodigiosin gene cluster was deleted as well. The resulting mutant strains were characterized in terms of morphology, growth parameters, secondary metabolites production and response to thiol-oxidation and cell-wall stresses. Deletion of SLIV_12645 gene encoding S. coelicolor SigR1 ortholog has the most prominent phenotypic effect, resulted in overproduction of actinorhodin and coelichelin P1 and increased sensitivity to diamide. The secreted proteome analysis of SLIV_12645 mutant revealed SigR1 influence on trafficking of proteins involved in cell wall biogenesis and refactoring. The reported here gene deletion system will further facilitate work on S. lividans strain improvement as a host for either secondary metabolites or protein production and will contribute to basic research in streptomycetes physiology, morphological development, secondary metabolism. On the other hand, the systematic deletion of sigma factors encoding genes demonstrates the complexity and conservation of regulatory processes conducted by sigma factors in streptomycetes

    Taxogenomic assessment and genomic characterisation of Weissella cibaria strain 92 able to metabolise oligosaccharides derived from dietary fibres

    Get PDF
    The importance of the gut microbiota in human health has led to an increased interest to study probiotic bacteria. Fermented food is a source of already established probiotics, but it also offers an opportunity to discover new taxa. Four strains of Weissella sp. isolated from Indian fermented food have been genome sequenced and classified into the species W. cibaria based on whole-genome phylogeny. The genome of W. cibaria strain 92, known to utilise xylooligosaccharides and produce lactate and acetate, was analysed to identify genes for oligosaccharide utilisation. Clusters including genes involved in transportation, hydrolysis and metabolism of xylooligosaccharides, arabinooligosaccharides and β-glucosides were identified. Growth on arabinobiose and laminaribiose was detected. A 6-phospho-β-glucosidase clustered with a phosphotransferase system was found upregulated during growth on laminaribiose, indicating a mechanism for laminaribiose utilisation. The genome of W. cibaria strain 92 harbours genes for utilising the phosphoketolase pathway for the production of both acetate and lactate from pentose and hexose sugars but lacks two genes necessary for utilising the pentose phosphate pathway. The ability of W. cibaria strain 92 to utilise several types of oligosaccharides derived from dietary fibres, and produce lactate and acetate makes it interesting as a probiotic candidate for further evaluation

    Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans

    Get PDF
    The gene encoding a thermostable cellulase of family 12 was previously isolated from a Rhodothermus marinus through functional screening. CelA is a protein of 260 aminoacyl residues with a 28-residue amino-terminal signal peptide. Mature CelA was poorly synthesized in some Escherichia coli strains and not at all in others. Here we present an alternative approach for its heterologous production as a secreted polypeptide in Streptomyces.status: publishe
    corecore