3 research outputs found

    Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009

    Full text link
    This critical review is focused on examples reported in the year 2009 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions (264 references). © 2011 The Royal Society of Chemistry.Moragues Pons, ME.; MartĂ­nez Mañez, R.; SancenĂłn Galarza, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews. 40(5):2593-2643. doi:10.1039/c0cs00015aS25932643405Schmidtchen, F. P., Gleich, A., & Schummer, A. (1989). Selective molecular hosts for anions. Pure and Applied Chemistry, 61(9), 1535-1546. doi:10.1351/pac198961091535Dietrich, B. (1993). Design of anion receptors: Applications. Pure and Applied Chemistry, 65(7), 1457-1464. doi:10.1351/pac199365071457Atwood, J. L., Holman, K. T., & Steed, J. W. (1996). Laying traps for elusive prey: recent advances in the non-covalent binding of anions. Chemical Communications, (12), 1401. doi:10.1039/cc9960001401Schmidtchen, F. P., & Berger, M. (1997). Artificial Organic Host Molecules for Anions. Chemical Reviews, 97(5), 1609-1646. doi:10.1021/cr9603845Antonisse, M. M. G., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical Communications, (4), 443-448. doi:10.1039/a707529dGale, P. (2000). Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coordination Chemistry Reviews, 199(1), 181-233. doi:10.1016/s0010-8545(99)00149-6Gale, P. A. (2001). Anion receptor chemistry: highlights from 1999. Coordination Chemistry Reviews, 213(1), 79-128. doi:10.1016/s0010-8545(00)00364-7Gale, P. A. (2003). Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coordination Chemistry Reviews, 240(1-2), 191-221. doi:10.1016/s0010-8545(02)00258-8Gale, P. A., & Quesada, R. (2006). Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coordination Chemistry Reviews, 250(23-24), 3219-3244. doi:10.1016/j.ccr.2006.05.020Gale, P. A., GarcĂ­a-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825dCaltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev., 38(2), 520-563. doi:10.1039/b806422aKubik, S. (2009). Amino acid containing anion receptors. Chem. Soc. Rev., 38(2), 585-605. doi:10.1039/b810531fSchmidtchen, F. P. (2005). Artificial Host Molecules for the Sensing of Anions. Anion Sensing, 1-29. doi:10.1007/b101160Schmidtchen, F. P. (2006). Reflections on the construction of anion receptors. Coordination Chemistry Reviews, 250(23-24), 2918-2928. doi:10.1016/j.ccr.2006.07.009Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237qSessler, J. L., Camiolo, S., & Gale, P. A. (2003). Pyrrolic and polypyrrolic anion binding agents. Coordination Chemistry Reviews, 240(1-2), 17-55. doi:10.1016/s0010-8545(03)00023-7Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/s0010-8545(02)00304-1Choi, K., & Hamilton, A. D. (2003). Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coordination Chemistry Reviews, 240(1-2), 101-110. doi:10.1016/s0010-8545(02)00305-3Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008Best, M. D., Tobey, S. L., & Anslyn, E. V. (2003). Abiotic guanidinium containing receptors for anionic species. Coordination Chemistry Reviews, 240(1-2), 3-15. doi:10.1016/s0010-8545(02)00256-4Llinares, J. M., Powell, D., & Bowman-James, K. (2003). Ammonium based anion receptors. Coordination Chemistry Reviews, 240(1-2), 57-75. doi:10.1016/s0010-8545(03)00019-5Schug, K. A., & Lindner, W. (2005). Noncovalent Binding between Guanidinium and Anionic Groups:  Focus on Biological- and Synthetic-Based Arginine/Guanidinium Interactions with Phosph[on]ate and Sulf[on]ate Residues. Chemical Reviews, 105(1), 67-114. doi:10.1021/cr040603jYoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733kBlondeau, P., Segura, M., PĂ©rez-FernĂĄndez, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089kXu, Z., Kim, S. K., & Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chemical Society Reviews, 39(5), 1457. doi:10.1039/b918937hGarcĂ­a-España, E., DĂ­az, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018Schmuck, C. (2006). How to improve guanidinium cations for oxoanion binding in aqueous solution? Coordination Chemistry Reviews, 250(23-24), 3053-3067. doi:10.1016/j.ccr.2006.04.001Amendola, V. (2001). Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 219-221, 821-837. doi:10.1016/s0010-8545(01)00368-xBeer, P. D., & Hayes, E. J. (2003). Transition metal and organometallic anion complexation agents. Coordination Chemistry Reviews, 240(1-2), 167-189. doi:10.1016/s0010-8545(02)00303-xSteed, J. W. (2009). Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev., 38(2), 506-519. doi:10.1039/b810364jO’Neil, E. J., & Smith, B. D. (2006). Anion recognition using dimetallic coordination complexes. Coordination Chemistry Reviews, 250(23-24), 3068-3080. doi:10.1016/j.ccr.2006.04.006Rice, C. R. (2006). Metal-assembled anion receptors. Coordination Chemistry Reviews, 250(23-24), 3190-3199. doi:10.1016/j.ccr.2006.05.017Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264mMartĂ­nez-Måñez, R., & SancenĂłn, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eKatayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598jKim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003fBeer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-xBeer, P. D. (1996). Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chemical Communications, (6), 689. doi:10.1039/cc9960000689De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386pGunnlaugsson, T., Glynn, M., Tocci (nĂ©e Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017Amendola, V., Esteban-GĂłmez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195lGunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., 
 Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-yWiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jMartĂ­nez-Måñez, R., & SancenĂłn, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zHijji, Y. M., Barare, B., Kennedy, A. P., & Butcher, R. (2009). Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors and Actuators B: Chemical, 136(2), 297-302. doi:10.1016/j.snb.2008.11.045Zhang, Y.-M., Lin, Q., Wei, T.-B., Wang, D.-D., Yao, H., & Wang, Y.-L. (2009). Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sensors and Actuators B: Chemical, 137(2), 447-455. doi:10.1016/j.snb.2009.01.015Anzenbacher, P., Nishiyabu, R., & Palacios, M. A. (2006). N-confused calix[4]pyrroles. Coordination Chemistry Reviews, 250(23-24), 2929-2938. doi:10.1016/j.ccr.2006.09.001Anzenbacher,, P., Try, A. C., Miyaji, H., JursĂ­kovĂĄ, K., Lynch, V. M., Marquez, M., & Sessler, J. L. (2000). Fluorinated Calix[4]pyrrole and Dipyrrolylquinoxaline:  Neutral Anion Receptors with Augmented Affinities and Enhanced Selectivities. Journal of the American Chemical Society, 122(42), 10268-10272. doi:10.1021/ja002112wBlack, C. B., Andrioletti, B., Try, A. C., Ruiperez, C., & Sessler, J. L. (1999). Dipyrrolylquinoxalines:  Efficient Sensors for Fluoride Anion in Organic Solution. Journal of the American Chemical Society, 121(44), 10438-10439. doi:10.1021/ja992579aMizuno, T., Wei, W.-H., Eller, L. R., & Sessler, J. L. (2002). Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites:  Efficient Fluoride Anion Receptors. Journal of the American Chemical Society, 124(7), 1134-1135. doi:10.1021/ja017298tMaeda, H., & Kusunose, Y. (2005). Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors With C-H⋅⋅⋅X− Interactions. Chemistry - A European Journal, 11(19), 5661-5666. doi:10.1002/chem.200500627Ghosh, T., Maiya, B. G., & Samanta, A. (2006). A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Transactions, (6), 795. doi:10.1039/b510469fAldakov, D., & Anzenbacher, P. (2004). Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction. Journal of the American Chemical Society, 126(15), 4752-4753. doi:10.1021/ja039934oSessler, J. L., Cho, D.-G., & Lynch, V. (2006). Diindolylquinoxalines:  Effective Indole-Based Receptors for Phosphate Anion. Journal of the American Chemical Society, 128(51), 16518-16519. doi:10.1021/ja067720bChauhan, S. M. S., Bisht, T., & Garg, B. (2009). 1-Arylazo-5,5-dimethyl dipyrromethanes: Versatile chromogenic probes for anions. Sensors and Actuators B: Chemical, 141(1), 116-123. doi:10.1016/j.snb.2009.06.013Liu, W.-X., Yang, R., Li, A.-F., Li, Z., Gao, Y.-F., Luo, X.-X., 
 Jiang, Y.-B. (2009). N-(Acetamido)thiourea based simple neutral hydrogen-bonding receptors for anions. Organic & Biomolecular Chemistry, 7(19), 4021. doi:10.1039/b910255hBabu, J. N., Bhalla, V., Kumar, M., Puri, R. K., & Mahajan, R. K. (2009). Chloride ion recognition using thiourea/urea based receptors incorporated into 1,3-disubstituted calix[4]arenes. New Journal of Chemistry, 33(3), 675. doi:10.1039/b816610bBoiocchi, M., Fabbrizzi, L., Garolfi, M., Licchelli, M., Mosca, L., & Zanini, C. (2009). Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal, 15(42), 11288-11297. doi:10.1002/chem.200901364Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172cQing, G.-Y., Sun, T.-L., Wang, F., He, Y.-B., & Yang, X. (2009). Chromogenic Chemosensors forN-Acetylaspartate Based on Chiral Ferrocene-Bearing Thiourea Derivatives. European Journal of Organic Chemistry, 2009(6), 841-849. doi:10.1002/ejoc.200800961Lu, Q.-S., Dong, L., Zhang, J., Li, J., Jiang, L., Huang, Y., 
 Yu, X.-Q. (2009). Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic and Chiral Anion Recognition. Organic Letters, 11(3), 669-672. doi:10.1021/ol8027303Bao, X., Yu, J., & Zhou, Y. (2009). Selective colorimetric sensing for F− by a cleft-shaped anion receptor containing amide and hydroxyl as recognition units. Sensors and Actuators B: Chemical, 140(2), 467-472. doi:10.1016/j.snb.2009.04.056Bhardwaj, V. K., Hundal, M. S., & Hundal, G. (2009). A tripodal receptor bearing catechol groups for the chromogenic sensing of F− ions via frozen proton transfer. Tetrahedron, 65(41), 8556-8562. doi:10.1016/j.tet.2009.08.023Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942aShiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50(29), 4293-4296. doi:10.1016/j.tetlet.2009.05.018Shiraishi, Y., Maehara, H., & Hirai, T. (2009). Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic & Biomolecular Chemistry, 7(10), 2072. doi:10.1039/b821466bBhosale, S. V., Bhosale, S. V., Kalyankar, M. B., & Langford, S. J. (2009). A Core-Substituted Naphthalene Diimide Fluoride Sensor. Organic Letters, 11(23), 5418-5421. doi:10.1021/ol9022722Lin, Z., Chen, H. C., Sun, S.-S., Hsu, C.-P., & Chow, T. J. (2009). Bifunctional maleimide dyes as selective anion sensors. Tetrahedron, 65(27), 5216-5221. doi:10.1016/j.tet.2009.04.090Yoo, J., Kim, M.-S., Hong, S.-J., Sessler, J. L., & Lee, C.-H. (2009). Selective Sensing of Anions with Calix[4]pyrroles Strapped with Chromogenic Dipyrrolylquinoxalines. The Journal of Organic Chemistry, 74(3), 1065-1069. doi:10.1021/jo802059cShang, X.-F., Li, J., Lin, H., Jiang, P., Cai, Z.-S., & Lin, H.-K. (2009). Anion recognition and sensing of ruthenium(ii) and cobalt(ii) sulfonamido complexes. Dalton Transactions, (12), 2096. doi:10.1039/b804445gDydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288uZimmermann-Dimer, L. M., Reis, D. C., Machado, C., & Machado, V. G. (2009). Chromogenic anionic chemosensors based on protonated merocyanine solvatochromic dyes in trichloromethane and in trichloromethane–water biphasic system. Tetrahedron, 65(21), 4239-4248. doi:10.1016/j.tet.2009.03.049Goswami, S., Hazra, A., Chakrabarty, R., & Fun, H.-K. (2009). Recognition of Carboxylate Anions and Carboxylic Acids by Selenium-Based New Chromogenic Fluorescent Sensor: A Remarkable Fluorescence Enhancement of Hindered Carboxylates. Organic Letters, 11(19), 4350-4353. doi:10.1021/ol901737sBarnard, A., Dickson, S. J., Paterson, M. J., Todd, A. M., & Steed, J. W. (2009). Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic & Biomolecular Chemistry, 7(8), 1554. doi:10.1039/b817889eHung, C.-Y., Singh, A. S., Chen, C.-W., Wen, Y.-S., & Sun, S.-S. (2009). Colorimetric and luminescent sensing of F− anion through strong anion–π interaction inside the π-acidic cavity of a pyridyl-triazine bridged trinuclear Re(i)–tricarbonyl diimine complex. Chemical Communications, (12), 1511. doi:10.1039/b820234fMetzger, A., & Anslyn, E. V. (1998). A Chemosensor for Citrate in Beverages. Angewandte Chemie International Edition, 37(5), 649-652. doi:10.1002/(sici)1521-3773(19980316)37:53.0.co;2-hNiikura, K., Metzger, A., & Anslyn, E. V. (1998). Chemosensor Ensemble with Selectivity for Inositol-Trisphosphate. Journal of the American Chemical Society, 120(33), 8533-8534. doi:10.1021/ja980990cAĂŻt-Haddou, H., Wiskur, S. L., Lynch, V. M., & Anslyn, E. V. (2001). Achieving Large Color Changes in Response to the Presence of Amino Acids:  A Molecular Sensing Ensemble with Selectivity for Aspartate. Journal of the American Chemical Society, 123(45), 11296-11297. doi:10.1021/ja011905vWiskur, S. L., & Anslyn, E. V. (2001). Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:  A Colorimetric Assay for the Aging of Scotch. Journal of the American Chemical Society, 123(41), 10109-10110. doi:10.1021/ja011800sZhong, Z., & Anslyn, E. V. (2002). A Colorimetric Sensing Ensemble for Heparin. Journal of the American Chemical Society, 124(31), 9014-9015. doi:10.1021/ja020505kLavigne, J. J., & Anslyn, E. V. (1999). Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte Chemie International Edition, 38(24), 3666-3669. doi:10.1002/(sici)1521-3773(19991216)38:243.0.co;2-eWiskur, S. L., Floriano, P. N., Anslyn, E. V., & McDevitt, J. T. (2003). A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angewandte Chemie International Edition, 42(18), 2070-2072. doi:10.1002/anie.200351058Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie International Edition, 41(20), 3811-3814. doi:10.1002/1521-3773(20021018)41:203.0.co;2-wHortalĂĄ, M. A., Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2003). Designing the Selectivity of the Fluorescent Detection of Amino Acids:  A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 125(1), 20-21. doi:10.1021/ja027110lFabbrizzi, L., Leone, A., & Taglietti, A. (2001). A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie International Edition, 40(16), 3066-3069. doi:10.1002/1521-3773(20010817)40:163.0.co;2-0Kim, S. Y., & Hong, J.-I. (2009). Dual signal (color change and fluorescence ON–OFF) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Letters, 50(17), 1951-1953. doi:10.1016/j.tetlet.2009.02.036Khatua, S., Kim, K., Kang, J., Huh, J. O., Hong, C. S., & Churchill, D. G. (2009). Synthesis, Structure, Magnetic Properties and Aqueous Optical Citrate Detection of Chiral Dinuclear CuIIComplexes. European Journal of Inorganic Chemistry, 2009(22), 3266-3274. doi:10.1002/ejic.200900357Wright, A. T., & Anslyn, E. V. (2006). Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev., 35(1), 14-28. doi:10.1039/b505518kKitamura, M., Shabbir, S. H., & Anslyn, E. V. (2009). Guidelines for Pattern Recognition Using Differential Receptors and Indicator Displacement Assays. The Journal of Organic Chemistry, 74(12), 4479-4489. doi:10.1021/jo900433jZhang, T., Edwards, N. Y., Bonizzoni, M., & Anslyn, E. V. (2009). The Use of Differential Receptors to Pattern Peptide Phosphorylation. Journal of the American Chemical Society, 131(33), 11976-11984. doi:10.1021/ja9041675Zhang, D. (2009). Highly selective colorimetric detection of cysteine and homocysteine in water through a direct displacement approach. Inorganic Chemistry Communications, 12(12), 1255-1258. doi:10.1016/j.inoche.2009.09.035Li, S., Zhou, Y., Yu, C., Chen, F., & Xu, J. (2009). Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New Journal of Chemistry, 33(7), 1462. doi:10.1039/b903752gMĂ€nnel-CroisĂ©, C., & Zelder, F. (2009). Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide. Inorganic Chemistry, 48(4), 1272-1274. doi:10.1021/ic900053hMullen, K. M., Davis, J. J., & Beer, P. D. (2009). Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New Journal of Chemistry, 33(4), 769. doi:10.1039/b819322cSancenĂłn, F., MartĂ­nez-Måñez, R., Miranda, M. A., SeguĂ­, M.-J., & Soto, J. (2003). Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates. Angewandte Chemie International Edition, 42(6), 647-650. doi:10.1002/anie.200390178JimĂ©nez, D., MartĂ­nez-Måñez, R., SancenĂłn, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125(30), 9000-9001. doi:10.1021/ja0347336SolĂ©, S., & GabbaĂŻ, F. P. (2004). A bidentate borane as colorimetric fluoride ion sensor. Chem. Commun., (11), 1284-1285. doi:10.1039/b403596hWang, W., Escobedo, J. O., Lawrence, C. M., & Strongin, R. M. (2004). Direct Detection of Homocysteine. Journal of the American Chemical Society, 126(11), 3400-3401. doi:10.1021/ja0318838Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., 
 Huang, C. (2007). A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. Journal of the American Chemical Society, 129(34), 10322-10323. doi:10.1021/ja073140iCho, D.-G., Kim, J. H., & Sessler, J. L. (20

    Synthesis and prospective study of the use of thiophene thiosemicarbazones as signalling scaffolding for the recognition of anions

    Get PDF
    A family of phenyl-thiosemicarbazone dyes have been prepared and their interactions with anions monitorized via UV-Vis, fluorescence and 1H NMR titrations. Additionally quantum chemical calculations and electrochemical studies completed the studies carried out. The phenyl-thiosemicarbazone dyes show a modulation of their hydrogen-bonding and electron-donating capabilities as a function of the chemical groups attached and display two different chromo-fluorogenic responses towards anions in acetonitrile solutions. The more basic anions fluoride and cyanide are able to induce the dual coordination-deprotonation processes for all the receptors studied, whereas acetate only interacts with receptors 2, 3, 6, 7, 8, 9 and dihydrogen phosphate displays sensing features only with the more acidic receptors 6. Coordinative hydrogen bonding interactions is indicated by a small bathochromic shift, whilst deprotonation results in the appearance of a new band at ca. 400-450 nm corresponding to a colour change from colourless-yellow to yellow-red depending on the receptor. In the emission fluorescence, hydrogen bonding interaction is visible through the enhancement of the emission band, whereas deprotonation induced the growth of a new red-shifted emission. The chromo-fluorogenic behaviour could be explained on the basis of the deprotonation tendency of the binding sites and the proton affinity of the anions. PM3 and 1H NMR calculations are in agreement with the existence of the dual complexation-deprotonation process, whereas both studies are in discrepancy in relation to which is the proton involved in the deprotonation. Electrochemical studies carried with receptor 3 showed a quite complex redox behaviour and anodic shifts of the reduction peaks in the presence of the basic anions fluoride, cyanide and acetate.Fundação para a CiĂȘncia e a Tecnologia (FCT
    corecore