7 research outputs found

    Characterization and low-cost treatment of an industrial arid soil polluted with lead sulfide in northern Chile

    No full text
    Lead (Pb) dust exposure can have detrimental environmental and human health effects. Improperly enclosed stockpiles of Pb concentrates can cause dust emissions, subsequent pollution of the soil and environmental risk. The aim of this work was to study Pb form, distribution and immobilization (by using eggshell and seashell) in an industrial arid soil near a storage area of Pb mineral concentrates in northern Chile. High amounts of sulfur (S; 9900 mg kg−1) and Pb (6530 mg kg−1) were found in the polluted soil. The energy-dispersive X-ray spectroscopy analysis revealed a lead sulfide (PbS: galena). Metallic Pb particles, which were between 41 and 46 µm, were identified in the soil. After eggshell and seashell (20%) were applied, the soil pH increased from 6.0 to 7.84 and 8.07, respectively. In the studied soil, the leaching test showed a 59 mg L−1 average Pb extractable concentration. After 240 days, extractable Pb by toxicity characteristics leaching procedure decreased to 4.79 mg L−1 (93.3%) with the application of seashell at 20% compared with a decrease of 33.33 mg L−1 (53.6%) using eggshell. Pb in the polluted soil was mainly found in the exchangeable fraction (66%), followed by the reducible (24%), residual (7%) and oxidizable (6%) fractions. According to the risk assessment code, the contaminated soil before treatment was classified as very high risk. Adding eggshell (20%) and seashell (20%) decreased the exchangeable fractions to 39 and 35%, respectively. Applying these liming materials achieved Pb immobilization in the soil, but the soil remained in the high environmental risk category. We conclude that the application of seashell waste, resulting from high aquaculture activity, opens an interesting window to the treatment of contaminated arid soils

    Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina

    No full text
    Despite located far from point sources of Hg pollution, high concentrations were recorded in plankton from the deep oligotrophic Lake Nahuel Huapi, located in North Patagonia. Native and introduced top predator fish with differing feeding habits are a valuable economic resource to the region. Hence, Hg and Se trophic interactions and pathways to these fish were assessed in the food web of this lake at three sites, using stable nitrogen and carbon isotopes. As expected based on the high THg in plankton, mercury did not biomagnify in the food web of Lake Nahuel Huapi, as most of the THg in plankton is in the inorganic form. As was observed in other aquatic systems, Se did not biomagnify either. When trophic pathways to top predator fish were analyzed, they showed that THg biomagnified in the food chains of native fish but biodiluted in the food chains of introduced salmonids. A more benthic diet, typical of native fish, resulted in higher [THg] bioaccumulation than a more pelagic or mixed diet, as in the case of introduced fish. Se:THg molar ratios were higher than 1 in all the fish species, indicating that Se might be offering a natural protection against Hg toxicity.Fil: Arcagni, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Ingeniería Nuclear. Laboratorio de Análisis por Activación Neutróica; ArgentinaFil: Rizzo, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Ingeniería Nuclear. Laboratorio de Análisis por Activación Neutróica; ArgentinaFil: Juncos, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Ingeniería Nuclear. Laboratorio de Análisis por Activación Neutróica; ArgentinaFil: Pavlin, Majda. Institute Jožef Stefan; EsloveniaFil: Campbell, Linda M. Saint Mary's University; CanadáFil: Arribere, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Ingeniería Nuclear. Laboratorio de Análisis por Activación Neutróica; ArgentinaFil: Horvat, Milena. Institute Jožef Stefan; EsloveniaFil: Ribeiro Guevara, Sergio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Ingeniería Nuclear. Laboratorio de Análisis por Activación Neutróica; Argentin

    Quellen- und Literaturverzeichnis

    No full text

    Literatur

    No full text
    corecore