227 research outputs found

    Dendritic cells cross talk with tumor antigen-specific CD8+T cells, Vγ9γδT cells, and Vα24NKT cells in patients with glioblastoma multiforme and in healthy donors

    Get PDF
    The finding that dendritic cells (DCs) orchestrate innate and adaptive immune responses has stimulated research on harnessing DCs for developing more effective vaccines for DC therapy. The expression of cytomegalovirus (CMV) antigens in glioblastoma multiforme (GBM) presents a unique opportunity to target these viral proteins for tumor immunotherapy. Here, we demonstrate that Vγ9γδT cells, innate immune cells activated by zoledronate (Z), and Vα24NKT cells, innate/adaptive immune cells activated by α-galactosylceramide (G) can link innate and adaptive immunities through cross talk with IFN-DCs from patients with GBM and healthy donors in a way that can amplify the activation and proliferation of CMVpp65-specific CD8+T cells. The IFN-DCs derived from patients with GBM used in this study express lower levels of programmed death ligand (PDL)1 and PDL2 and higher levels of CCR7 than the most commonly used mature IL-4DCs. The expression level of programmed cell death 1 (PD1) on CD8+ T cells, including CMVpp65-specific CD8+T cells, expanded by IFN-DCs pulsed with the CMVpp65-peptide and Z plus G (IFN-DCs/P+Z+G) was lower than that expanded by IFN-DCs pulsed with the peptide alone (IFN-DCs/P). Multifunctional T cells, including HLA-A*0201-restricted CMVpp65-specific CD8+T cells, Vγ9γδT cells, and Vα24NKT cells, efficiently kill HLA-A*0201 positive GBM cell line expressing CMVpp65 protein (T98G). These findings indicate that DC therapy using IFN-DCs/P+Z+G and/or CTL therapy using CMVpp65-specific CD8+T cells expanded by IFN-DCs/P+Z+G may lead to a good clinical outcome for patients with GBM. This article is protected by copyright. All rights reserved

    Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration

    Get PDF
    Tissue development and regeneration depend on cell-cell interactions and signals that target stem cells and their immediate progeny. However, the cellular behaviours that lead to a properly regenerated tissue are not well understood. Using a new, non-invasive, intravital two-photon imaging approach we study physiological hair-follicle regeneration over time in live mice. By these means we have monitored the behaviour of epithelial stem cells and their progeny during physiological hair regeneration and addressed how the mesenchyme influences their behaviour. Consistent with earlier studies, stem cells are quiescent during the initial stages of hair regeneration, whereas the progeny are more actively dividing. Moreover, stem cell progeny divisions are spatially organized within follicles. In addition to cell divisions, coordinated cell movements of the progeny allow the rapid expansion of the hair follicle. Finally, we show the requirement of the mesenchyme for hair regeneration through targeted cell ablation and long-term tracking of live hair follicles. Thus, we have established an in vivo approach that has led to the direct observation of cellular mechanisms of growth regulation within the hair follicle and that has enabled us to precisely investigate functional requirements of hair-follicle components during the process of physiological regeneration. © 2012 Macmillan Publishers Limited. All rights reserved

    Looking to the future of zebrafish as a model to understand the genetic basis of eye disease

    Get PDF
    In this brief commentary, we provide some of our thoughts and opinions on the current and future use of zebrafish to model human eye disease, dissect pathological progression and advance in our understanding of the genetic bases of microphthalmia, andophthalmia and coloboma (MAC) in humans. We provide some background on eye formation in fish and conservation and divergence across vertebrates in this process, discuss different approaches for manipulating gene function and speculate on future research areas where we think research using fish may prove to be particularly effective

    Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain

    Get PDF
    While the availability of pluripotent stem cells has opened new prospects for generating neural donor cells for nervous system repair, their capability to integrate with adult brain tissue in a structurally relevant way is still largely unresolved. We addressed the potential of human embryonic stem cell-derived long-term self-renewing neuroepithelial stem cells (lt-NES cells) to establish axonal projections after transplantation into the adult rodent brain. Transgenic and species-specific markers were used to trace the innervation pattern established by transplants in the hippocampus and motor cortex. In vitro, lt-NES cells formed a complex axonal network within several weeks after the initiation of differentiation and expressed a composition of surface receptors known to be instrumental in axonal growth and pathfinding. In vivo, these donor cells adopted projection patterns closely mimicking endogenous projections in two different regions of the adult rodent brain. Hippocampal grafts placed in the dentate gyrus projected to both the ipsilateral and contralateral pyramidal cell layers, while axons of donor neurons placed in the motor cortex extended via the external and internal capsule into the cervical spinal cord and via the corpus callosum into the contralateral cortex. Interestingly, acquisition of these region-specific projection profiles was not correlated with the adoption of a regional phenotype. Upon reaching their destination, human axons established ultrastructural correlates of synaptic connections with host neurons. Together, these data indicate that neurons derived from human pluripotent stem cells are endowed with a remarkable potential to establish orthotopic long-range projections in the adult mammalian brain

    Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons

    Get PDF
    The neocortex contains an unparalleled diversity of neuronal subtypes, each defined by distinct traits that are developmentally acquired under the control of subtype-specific and pan-neuronal genes. The regulatory logic that orchestrates the expression of these unique combinations of genes is unknown for any class of cortical neuron. Here, we report that Fezf2 is a selector gene able to regulate the expression of gene sets that collectively define mouse corticospinal motor neurons (CSMN). We find that Fezf2 directly induces the glutamatergic identity of CSMN via activation of Vglut1 (Slc17a7) and inhibits a GABAergic fate by repressing transcription of Gad1. In addition, we identify the axon guidance receptor EphB1 as a target of Fezf2 necessary to execute the ipsilateral extension of the corticospinal tract. Our data indicate that co-regulated expression of neuron subtype–specific and pan-neuronal gene batteries by a single transcription factor is one component of the regulatory logic responsible for the establishment of CSMN identity

    Self-Organizing Circuit Assembly through Spatiotemporally Coordinated Neuronal Migration within Geometric Constraints

    Get PDF
    Neurons are dynamically coupled with each other through neurite-mediated adhesion during development. Understanding the collective behavior of neurons in circuits is important for understanding neural development. While a number of genetic and activity-dependent factors regulating neuronal migration have been discovered on single cell level, systematic study of collective neuronal migration has been lacking. Various biological systems are shown to be self-organized, and it is not known if neural circuit assembly is self-organized. Besides, many of the molecular factors take effect through spatial patterns, and coupled biological systems exhibit emergent property in response to geometric constraints. How geometric constraints of the patterns regulate neuronal migration and circuit assembly of neurons within the patterns remains unexplored.We established a two-dimensional model for studying collective neuronal migration of a circuit, with hippocampal neurons from embryonic rats on Matrigel-coated self-assembled monolayers (SAMs). When the neural circuit is subject to geometric constraints of a critical scale, we found that the collective behavior of neuronal migration is spatiotemporally coordinated. Neuronal somata that are evenly distributed upon adhesion tend to aggregate at the geometric center of the circuit, forming mono-clusters. Clustering formation is geometry-dependent, within a critical scale from 200 µm to approximately 500 µm. Finally, somata clustering is neuron-type specific, and glutamatergic and GABAergic neurons tend to aggregate homo-philically.We demonstrate self-organization of neural circuits in response to geometric constraints through spatiotemporally coordinated neuronal migration, possibly via mechanical coupling. We found that such collective neuronal migration leads to somata clustering, and mono-cluster appears when the geometric constraints fall within a critical scale. The discovery of geometry-dependent collective neuronal migration and the formation of somata clustering in vitro shed light on neural development in vivo

    Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling

    Get PDF
    With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as “the most complex thing in the universe.” The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed

    Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis

    Get PDF
    The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.info:eu-repo/semantics/publishedVersio
    corecore