64 research outputs found

    Can root-associated fungi mediate the impact of abiotic conditions on the growth of a High Arctic herb?

    Get PDF
    Arctic plants are affected by many stressors. Root-associated fungi are thought to influence plant performance in stressful environmental conditions. However, the relationships are not well-known; do the number of fungal partners, their ecological functions and community composition mediate the impact of environmental conditions and/or influence host plant performance? To address these questions, we used a common arctic plant as a model system: Bistorta vivipara. Whole plants (including root system, n = 214) were collected from nine locations in Spitsbergen. Morphometric features were measured as a proxy for plant performance and combined with metabarcoding datasets of their root-associated fungi (amplicon sequence variants, ASVs), edaphic and meteorological variables. Seven biological hypotheses regarding fungal influence on plant measures were tested using structural equation modelling. The best-fitting model revealed that local temperature affected plants both directly (negatively aboveground and positively below-ground) and indirectly - mediated by fungal richness and the ratio of symbio- and saprotrophic ASVs. The influence of temperature on host plants is therefore complex and should be examined further. Fungal community composition did not impact plant measurements and plant reproductive investment was not influenced by any fungal parameters. The lack of impact of fungal community composition on plant performance suggests that the functional importance of fungi is more essential for the plant than their identity

    How formal initiatives to improve teaching can lead to more significant informal conversations and increased sharing practice

    Get PDF
    University teachers grow professionally from conversations about learning and teaching with colleagues. Significant informal conversations can be facilitated through formal activities initiated from the institutional side. This case-study shows how a formal institutional initiative to enhance educational quality has facilitated more significant informal conversations. Such conversations power constructive feedback to the organisation, improve the formal quality development work at the institutional level, and increase the use of collegial experiences across the institution. We identify the formal initiative “Collegial sharing sessions” as particularly efficient for fuelling significant informal conversations within and across departments

    Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic

    Get PDF
    Source:DOI: 10.1002/mbo3.375Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid- July to mid- September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO3- N, NH4- N, and K; and saprotrophic fungi to NO3-N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results suggest that some fungal species are favored, while others are disfavored resulting in their local extinction due to long- term changes in snow amount. Shifts in species composition of fungal functional groups are likely to affect nutrient cycling, ecosystem respira- tion, and stored permafrost carbon

    Genetic consequences of climate change for northern plants

    Get PDF
    Climate change will lead to loss of range for many species, and thus to loss of genetic diversity crucial for their long-term persistence. We analysed range-wide genetic diversity (amplified fragment length polymorphisms) in 9581 samples from 1200 populations of 27 northern plant species, to assess genetic consequences of range reduction and potential association with species traits. We used species distribution modelling (SDM, eight techniques, two global circulation models and two emission scenarios) to predict loss of range and genetic diversity by 2080. Loss of genetic diversity varied considerably among species, and this variation could be explained by dispersal adaptation (up to 57%) and by genetic differentiation among populations (FST; up to 61%). Herbs lacking adaptations for long-distance dispersal were estimated to lose genetic diversity at higher rate than dwarf shrubs adapted to long-distance dispersal. The expected range reduction in these 27 northern species was larger than reported for temperate plants, and all were predicted to lose genetic diversity according to at least one scenario. SDM combined with FST estimates and/or with species trait information thus allows the prediction of species' vulnerability to climate change, aiding rational prioritization of conservation efforts

    Past climate‐driven range shifts and population genetic diversity in arctic plants

    Get PDF
    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses.Location: The circumpolar Arctic and northern temperate alpine ranges.Methods: We estimated the climatic niches of 30 cold-adapted plant species using range maps coupled with species distribution models and hindcasted species suitable areas to reconstructions of the mid-Holocene and LGM climates. We computed the species-specific migration distances from the species glacial refugia to their current distribution and correlated distances to extant genetic diversity in 1295 populations. Differential responses among species were related to life-history traits.Results: We found a negative association between inferred migration distances from refugia and genetic diversities in 25 species, but only 11 had statistically significant negative slopes. The relationships between inferred distance and population genetic diversity were steeper for insect-pollinated species than wind-pollinated species, but the difference among pollination system was marginally independent from phylogenetic autocorrelation.Main conclusion: The relationships between inferred migration distances and genetic diversities in 11 species, independent from current isolation, indicate that past range shifts were associated with a genetic bottleneck effect with an average of 21% loss of genetic diversity per 1000 km−1. In contrast, the absence of relationship in many species also indicates that the response is species specific and may be modulated by plant pollination strategies or result from more complex historical contingencies than those modelled here

    The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    Get PDF
    AIM : The Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate change. We aim to test whether plant species and genetic diversity patterns are correlated with time since deglaciation at regional and local scales. We also investigate whether species richness is correlated with genetic diversity in vascular plants. LOCATION : Circumarctic. METHODS : We investigated species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic species. Correlations between diversity measures and landscape age (time since deglaciation) as well as variables characterizing current climate were analysed using spatially explicit simultaneous autoregressive models. RESULTS : lts Regional species richness of vascular plants and genetic diversity were correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect size compared to the models of bryophyte and lichen richness. MAIN CONCLUSION : Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag, it will most probably also exhibit lags in response to current and future climate change. Our results also suggest that local species richness at the plot scale is more determined by local habitat factors.Compilation of the species richness data was made possible through the TFI Networks grant to CD, “Effect Studies and Adaptation to Climate Change,” under the Norforsk initiative (2011 – 2014) which supported two CBIONET-AVA workshops held in Denmark during 2013. The genetic studies were funded by the Research Council of Norway (grant nos. 150322/720 and 170952/V40 to CB).http://http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1466-82382017-04-30hb2016Plant Production and Soil Scienc

    Betula_pubescens_only_303_132_structure-input

    No full text
    Input file to the software program structure based on the aflp matrix only including populations of B. pubescens, 3 primers, 303 ind and 132 marker

    AFLPmatrix_orginal_Betula_pub_alle_332_155

    No full text
    Binary AFLP matrix with 155 markers, 332 individuals of mainly Betula pubescens, but also including reference species and hybrids generated by 3 primer combination

    Germinating seeds or bulbils in 87 of 113 tested Arctic species indicate potential for ex situ seed bank storage

    Get PDF
    Arctic plant species are expected to lose range due to climate change. One approach to preserve the genetic and species diversity for the future is to store propagules in seed vaults. However, germinability of seeds is assumed to be low for Arctic species. We evaluated ex situ storage potential of 113 of the 161 native angiosperms of Svalbard by studying seed ripening and germination. Seeds or bulbils were collected, and germinability was tested after one winter of storage in the Svalbard Global Seed Vault. Twenty-six of the species did not produce ripe propagules, 8 produced bulbils, and 79 produced seeds. Bulbils sprouted to high percentages. Seeds of 10 species did not germinate, 22 had low germination (70 %). More than 70 % of the species belonging to Asteraceae, Brassicaceae, Caryophyllaceae, Juncaceae, Rosaceae, and Saxifragaceae germinated. Cold tolerant, common species had higher germination percentages than relatively thermophilous, rare species. Germination percentages were six times higher than observed in 1969 (n = 51) and 0.7 times that observed in 2008 (n = 22), indicating that recent climate warming improves germination in the Arctic. While in situ conservation is of vital importance, ex situ conservation in seed banks is a potential complementary conservation strategy for the majority of Arctic vascular plant species. For species that did not germinate, other methods for ex situ conservation should be sought, for example, growing in botanical gardens

    Data from: Comparative analyses of plastid and AFLP data suggest different colonization history and asymmetric hybridisation between Betula pubescens and B. nana

    No full text
    Birches (Betula spp.) hybridize readily, confounding genetic signatures of refugial isolation and postglacial migration. We aimed to distinguish hybridization from range-shift processes in the two widespread and cold-adapted species B. nana and B. pubescens, previously shown to share a similarly east–west-structured variation in plastid DNA (pDNA). We sampled the two species throughout their ranges and included reference samples of five other Betula species and putative hybrids. We analysed 901 individual plants using mainly nuclear high-resolution markers (amplified fragment length polymorphisms; AFLPs); a subset of 64 plants was also sequenced for two pDNA regions. Whereas the pDNA variation as expected was largely shared between B. nana and B. pubescens, the two species were distinctly differentiated at AFLP loci. In B. nana, both the AFLP and pDNA results corroborated the former pDNA-based hypothesis that it expanded from at least two major refugia in Eurasia, one south of and one east of the North European ice sheets. In contrast, B. pubescens showed a striking lack of geographic structuring of its AFLP variation. We identified a weak but significant increase in nuclear (AFLP) gene flow from B. nana into B. pubescens with increasing latitude, suggesting hybridization has been most frequent at the postglacial expansion front of B. pubescens and that hybrids mainly backcrossed to B. pubescens. Incongruence between pDNA and AFLP variation in B. pubescens can be explained by efficient expansion from a single large refugium combined with leading-edge hybridization and plastid capture from B. nana during colonization of new territory already occupied by this more cold-tolerant species
    corecore