994 research outputs found
LUX -- A Laser-Plasma Driven Undulator Beamline
The LUX beamline is a novel type of laser-plasma accelerator. Building on the
joint expertise of the University of Hamburg and DESY the beamline was
carefully designed to combine state-of-the-art expertise in laser-plasma
acceleration with the latest advances in accelerator technology and beam
diagnostics. LUX introduces a paradigm change moving from single-shot
demonstration experiments towards available, stable and controllable
accelerator operation. Here, we discuss the general design concepts of LUX and
present first critical milestones that have recently been achieved, including
the generation of electron beams at the repetition rate of up to 5 Hz with
energies above 600 MeV and the generation of spontaneous undulator radiation at
a wavelength well below 9 nm.Comment: submitte
Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System
The beta-ray angular correlations for the spin alignments of 8Li and 8B have
been observed in order to test the conserved vector current (CVC) hypothesis.
The alignment correlation terms were combined with the known beta-alpha-angular
correlation terms to determine all the matrix elements contributing to the
correlation terms. The weak magnetism term, 7.5\pm0.2, deduced from the
beta-ray correlation terms was consistent with the CVC prediction 7.3\pm0.2,
deduced from the analog-gamma-decay measurement based on the CVC hypothesis.
However, there was no consistent CVC prediction for the second-forbidden term
associated with the weak vector current. The experimental value for the
second-forbidden term was 1.0 \pm 0.3, while the CVC prediction was 0.1 \pm 0.4
or 2.1 \pm 0.5.Comment: 31 pages, 12 figures, Accepted for publication in Phys. Rev.
Volcanic forcing improves Atmosphere-Ocean Coupled General Circulation Model scaling performance
Recent Atmosphere-Ocean Coupled General Circulation Model (AOGCM) simulations
of the twentieth century climate, which account for anthropogenic and natural
forcings, make it possible to study the origin of long-term temperature
correlations found in the observed records. We study ensemble experiments
performed with the NCAR PCM for 10 different historical scenarios, including no
forcings, greenhouse gas, sulfate aerosol, ozone, solar, volcanic forcing and
various combinations, such as it natural, anthropogenic and all forcings. We
compare the scaling exponents characterizing the long-term correlations of the
observed and simulated model data for 16 representative land stations and 16
sites in the Atlantic Ocean for these scenarios. We find that inclusion of
volcanic forcing in the AOGCM considerably improves the PCM scaling behavior.
The scenarios containing volcanic forcing are able to reproduce quite well the
observed scaling exponents for the land with exponents around 0.65 independent
of the station distance from the ocean. For the Atlantic Ocean, scenarios with
the volcanic forcing slightly underestimate the observed persistence exhibiting
an average exponent 0.74 instead of 0.85 for reconstructed data.Comment: 4 figure
Weak lensing analysis of RXC J2248.7-4431
We present a weak lensing analysis of the cluster of galaxies RXC
J2248.7-4431, a massive system at z=0.3475 with prominent strong lensing
features covered by the HST/CLASH survey (Postman et al. 2012). Based on UBVRIZ
imaging from the WFI camera at the MPG/ESO-2.2m telescope, we measure
photometric redshifts and shapes of background galaxies. The cluster is
detected as a mass peak at 5sigma significance. Its density can be parametrised
as an NFW profile (Navarro et al. 1996) with two free parameters, the mass
M_200m=(33.1+9.6-6.8)x10^14Msol and concentration c_200m=2.6+1.5-1.0. We
discover a second cluster inside the field of view at a photometric redshift of
z~0.6, with an NFW mass of M_200m=(4.0+3.7-2.6)x10^14Msol.Comment: 15 pages, 17 figures; matching published versio
Power-law persistence and trends in the atmosphere: A detailed study of long temperature records
We use several variants of the detrended fluctuation analysis to study the
appearance of long-term persistence in temperature records, obtained at 95
stations all over the globe. Our results basically confirm earlier studies. We
find that the persistence, characterized by the correlation C(s) of temperature
variations separated by s days, decays for large s as a power law, C(s) ~
s^(-gamma). For continental stations, including stations along the coastlines,
we find that gamma is always close to 0.7. For stations on islands, we find
that gamma ranges between 0.3 and 0.7, with a maximum at gamma = 0.4. This is
consistent with earlier studies of the persistence in sea surface temperature
records where gamma is close to 0.4. In all cases, the exponent gamma does not
depend on the distance of the stations to the continental coastlines. By
varying the degree of detrending in the fluctuation analysis we obtain also
information about trends in the temperature records.Comment: 5 pages, 4 including eps figure
Golden gravitational lensing systems from the Sloan Lens ACS Survey. I. SDSS J1538+5817: one lens for two sources
We present a lensing and photometric study of the exceptional system SDSS
J1538+5817, identified by the SLACS survey. The lens is a luminous elliptical
at redshift z=0.143. Using HST public images in two different filters, the
presence of two background sources lensed into an Einstein ring and a double
system is ascertained. Our new spectroscopic observations, performed at the
NOT, reveal that the two sources are located at the same redshift z=0.531. We
investigate the total mass distribution of the lens between 1 and 4 kpc from
the galaxy center by means of parametric and non-parametric lensing codes that
describe the multiple images as point-like objects. Several disparate lensing
models agree on: (1) reproducing accurately the observed image positions; (2)
predicting a nearly axisymmetric total mass distribution, centered and oriented
as the light distribution; (3) measuring a value of 8.11 x 10^{10} M_{Sun} for
the total mass projected within the Einstein radius of 2.5 kpc; (4) estimating
a total mass density profile slightly steeper than an isothermal one. A fit of
the SDSS multicolor photometry with CSP models provides a value of 20 x 10^{10}
M_{Sun} for the total stellar mass of the galaxy and of 0.9 for the fraction of
projected luminous over total mass enclosed inside the Einstein radius. By
combining lensing and photometric mass measurements, we differentiate the lens
mass content in terms of luminous and dark matter components. This
two-component modeling, which is viable only in extraordinary systems like SDSS
J1538+5817, leads to a description of the global properties of the galaxy dark
matter halo. Extending these results to a larger number of lenses would improve
considerably our understanding of galaxy formation and evolution processes in
the LCDM scenario.Comment: 21 pages, 16 figures, accepted by The Astrophysical Journa
- …