119 research outputs found

    Fighting Antimicrobial Resistance:Development and Implementation of the Ghanaian National Action Plan (2017-2021)

    Get PDF
    In recent years, Ghana has been recognised as a leading player in addressing antimicrobial resistance (AMR) in Africa. However, based on our literature review, we could not ascertain whether the core elements of the national action plan (NAP) were implemented in practice. In this paper, we present a qualitative analysis of the development of AMR-related policies in Ghana, including the NAP. We conducted 13 semi-structured expert interviews to obtain at a more thorough understanding of the implementation process for the AMR NAP and to highlight its accomplishments and shortcomings. The results show that AMR policies, as embodied in the NAP, have led to an extended network of cooperation between stakeholders in many political fields. Broadly, limited allocation of financial resources from the government and from international cooperation have been deplored. Furthermore, the opportunity for using the NAP in mainstreaming the response to the threat of AMR has not been seized. To the general public, this remained hidden behind a number of other relevant health topics such as infection prevention, veterinary services and pharmaceutical regulation. As a One Health (OH) challenge, developing countries could integrate AMR NAPs into other health and environmental programmes to improve its implementation in practice

    Laboratory-based surveillance of antimicrobial resistance in regions of Kenya:An assessment of capacities, practices, and barriers by means of multi-facility survey

    Get PDF
    BACKGROUND: Adequate laboratory capacity is critical in the implementation of coherent surveillance for antimicrobial resistance (AMR). We describe capacities and deficiencies in laboratory infrastructure and AMR surveillance practices among health facilities in Kenya to support progress toward broader sustainable laboratory-based AMR surveillance. METHODS: A convenience sample of health facilities from both public and private sectors across the country were selected. Information was obtained cross-sectionally between 5th October and 8th December 2020 through online surveys of laboratory managers. The assessment covered quality assurance, management and dissemination of AMR data, material and equipment, staffing, microbiology competency, biosafety and certification. A scoring scheme was developed for the evaluation and interpreted as (80% and above) facility is adequate (60–79%) requires some strengthening and (<60%) needing significant strengthening. Average scores were compared across facilities in public and private sectors, rural and urban settings, as well as national, county, and community levels. RESULTS: Among the participating facilities (n = 219), the majority (n = 135, 61.6%) did not offer bacterial culture testing, 47 (21.5%) offered culture services only and 37 (16.9%) performed antimicrobial susceptibility testing (AST). The major gaps identified among AST facilities were poor access to laboratory information management technology (LIMT) (score: 45.9%) and low uptake of external quality assessment (EQA) programs for cultures (score 67.7%). Access to laboratory technology was more than two-fold higher in facilities in urban (58.6%) relative to rural (25.0%) areas. Whilst laboratories that lacked culture services were found to have significant infrastructural gaps (average score 59.4%), facilities that performed cultures only (average score: 83.6%) and AST (average score: 82.9%) recorded significantly high scores that were very similar across areas assessed. Lack of equipment was identified as the leading challenge to the implementation of susceptibility testing among 46.8% of laboratories. CONCLUSIONS: We identified key gaps in laboratory information management technology, external quality assurance and material and equipment among the surveyed health facilities in Kenya. Our findings suggest that by investing in equipment, facilities performing cultures can be successfully upgraded to provide additional antimicrobial susceptibility testing, presenting a chance for a major leap toward improved AMR diagnostics and surveillance in the country

    Prediction of Antibiotic Susceptibility Profiles of Vibrio cholerae Isolates From Whole Genome Illumina and Nanopore Sequencing Data: CholerAegon

    Get PDF
    During the last decades, antimicrobial resistance (AMR) has become a global public health concern. Nowadays multi-drug resistance is commonly observed in strains of Vibrio cholerae, the etiological agent of cholera. In order to limit the spread of pathogenic drug-resistant bacteria and to maintain treatment options the analysis of clinical samples and their AMR profiles are essential. Particularly, in low-resource settings a timely analysis of AMR profiles is often impaired due to lengthy culturing procedures for antibiotic susceptibility testing or lack of laboratory capacity. In this study, we explore the applicability of whole genome sequencing for the prediction of AMR profiles of V. cholerae. We developed the pipeline CholerAegon for the in silico prediction of AMR profiles of 82 V. cholerae genomes assembled from long and short sequencing reads. By correlating the predicted profiles with results from phenotypic antibiotic susceptibility testing we show that the prediction can replace in vitro susceptibility testing for five of seven antibiotics. Because of the relatively low costs, possibility for real-time data analyses, and portability, the Oxford Nanopore Technologies MinION sequencing platform-especially in light of an upcoming less error-prone technology for the platform-appears to be well suited for pathogen genomic analyses such as the one described here. Together with CholerAegon, it can leverage pathogen genomics to improve disease surveillance and to control further spread of antimicrobial resistance.We thank Dr. Daniel Cadar and Heike Baum from the NGS core facility of the Bernhard Nocht Institute for Tropical Medicine for technical support. We thank the Carl-Zeiss-Stiftung (FKZ 0563-2.8/738/2), TWMMG DigLeben (5575/10-9), and DFG iDIV (FZT 118, 202548816) for financial support. Figures were finalized with Inkscape v1.0.2.S

    Genetic Diversity of Enteric Viruses in Children under Five Years Old in Gabon

    Get PDF
    Enteric viruses are the leading cause of diarrhea in children globally. Identifying viral agents and understanding their genetic diversity could help to develop effective preventive measures. This study aimed to determine the detection rate and genetic diversity of four enteric viruses in Gabonese children aged below five years. Stool samples from children <5 years with (n = 177) and without (n = 67) diarrhea were collected from April 2018 to November 2019. Norovirus, astrovirus, sapovirus, and aichivirus A were identified using PCR techniques followed by sequencing and phylogenetic analyses. At least one viral agent was identified in 23.2% and 14.9% of the symptomatic and asymptomatic participants, respectively. Norovirus (14.7%) and astrovirus (7.3%) were the most prevalent in children with diarrhea, whereas in the healthy group norovirus (9%) followed by the first reported aichivirus A in Gabon (6%) were predominant. The predominant norovirus genogroup was GII, consisting mostly of genotype GII.P31-GII.4 Sydney. Phylogenetic analysis of the 3CD region of the aichivirus A genome revealed the presence of two genotypes (A and C) in the study cohort. Astrovirus and sapovirus showed a high diversity, with five different astrovirus genotypes and four sapovirus genotypes, respectively. Our findings give new insights into the circulation and genetic diversity of enteric viruses in Gabonese children.Peer Reviewe

    Associations between eight earth observation-derived climate variables and enteropathogen infection: An independent participant data meta-analysis of surveillance studies with broad spectrum nucleic acid diagnostics

    Get PDF
    Diarrheal disease, still a major cause of childhood illness, is caused by numerous, diverse infectious microorganisms, which are differentially sensitive to environmental conditions. Enteropathogen‐specific impacts of climate remain underexplored. Results from 15 studies that diagnosed enteropathogens in 64,788 stool samples from 20,760 children in 19 countries were combined. Infection status for 10 common enteropathogens—adenovirus, astrovirus, norovirus, rotavirus, sapovirus, Campylobacter, ETEC, Shigella, Cryptosporidium and Giardia—was matched by date with hydrometeorological variables from a global Earth observation dataset—precipitation and runoff volume, humidity, soil moisture, solar radiation, air pressure, temperature, and wind speed. Models were fitted for each pathogen, accounting for lags, nonlinearity, confounders, and threshold effects. Different variables showed complex, non‐linear associations with infection risk varying in magnitude and direction depending on pathogen species. Rotavirus infection decreased markedly following increasing 7‐day average temperatures—a relative risk of 0.76 (95% confidence interval: 0.69–0.85) above 28°C—while ETEC risk increased by almost half, 1.43 (1.36–1.50), in the 20–35°C range. Risk for all pathogens was highest following soil moistures in the upper range. Humidity was associated with increases in bacterial infections and decreases in most viral infections. Several virus species\u27 risk increased following lower‐than‐average rainfall, while rotavirus and ETEC increased with heavier runoff. Temperature, soil moisture, and humidity are particularly influential parameters across all enteropathogens, likely impacting pathogen survival outside the host. Precipitation and runoff have divergent associations with different enteric viruses. These effects may engender shifts in the relative burden of diarrhea‐causing agents as the global climate changes

    Characterization of Salmonella enterica from invasive bloodstream infections and water sources in rural Ghana.

    Get PDF
    BACKGROUND: Non-typhoidal Salmonella (NTS) cause the majority of bloodstream infections in Ghana, however the mode of transmission and source of invasive NTS in Africa are poorly understood. This study compares NTS from water sources and invasive bloodstream infections in rural Ghana. METHODS: Blood from hospitalised, febrile children and samples from drinking water sources were analysed for Salmonella spp. Strains were serotyped to trace possible epidemiological links between human and water-derived isolates.. Antibiotic susceptibility testing was performed, RESULTS: In 2720 blood culture samples, 165 (6%) NTS were isolated. S. Typhimurium (70%) was the most common serovar followed by S. Enteritidis (8%) and S. Dublin (8%). Multidrug resistance (MDR) was found in 95 (58%) NTS isolates, including five S. Enteritidis. One S. Typhimurium showed reduced fluroquinolone susceptibility. In 511 water samples, 19 (4%) tested positive for S. enterica with two isolates being resistant to ampicillin and one isolate being resistant to cotrimoxazole. Serovars from water samples were not encountered in any of the clinical specimens. CONCLUSION: Water analyses demonstrated that common drinking water sources were contaminated with S. enterica posing a potential risk for transmission. However, a link between S. enterica from water sources and patients could not be established, questioning the ability of water-derived serovars to cause invasive bloodstream infections

    Regional Variation of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacterales, Fluoroquinolone-ResistantSalmonella entericaand Methicillin-ResistantStaphylococcus aureusAmong Febrile Patients in Sub-Saharan Africa

    Get PDF
    Background: Antimicrobial resistance (AMR) thwarts the curative power of drugs and is a present-time global problem. We present data on antimicrobial susceptibility and resistance determinants of bacteria the WHO has highlighted as being key antimicrobial resistance concerns in Africa, to strengthen knowledge of AMR patterns in the region. Methods: Blood, stool, and urine specimens of febrile patients, aged between ≥ 30 days and ≤ 15 years and hospitalized in Burkina Faso, Gabon, Ghana, and Tanzania were cultured from November 2013 to March 2017 (Patients > 15 years were included in Tanzania). Antimicrobial susceptibility testing was performed for all Enterobacterales and Staphylococcus aureus isolates using disk diffusion method. Extended-spectrum beta-lactamase (ESBL) production was confirmed by double-disk diffusion test and the detection of blaCTX–M, blaTEM and blaSHV. Multilocus sequence typing was conducted for ESBL-producing Escherichia coli and Klebsiella pneumoniae, ciprofloxacin-resistant Salmonella enterica and S. aureus. Ciprofloxacin-resistant Salmonella enterica were screened for plasmid-mediated resistance genes and mutations in gyrA, gyrB, parC, and parE. S. aureus isolates were tested for the presence of mecA and Panton-Valentine Leukocidin (PVL) and further genotyped by spa typing. Results: Among 4,052 specimens from 3,012 patients, 219 cultures were positive of which 88.1% (n = 193) were Enterobacterales and 7.3% (n = 16) S. aureus. The prevalence of ESBL-producing Enterobacterales (all CTX-M15 genotype) was 45.2% (14/31; 95% CI: 27.3, 64.0) in Burkina Faso, 25.8% (8/31; 95% CI: 11.9, 44.6) in Gabon, 15.1% (18/119; 95% CI: 9.2, 22.8) in Ghana and 0.0% (0/12; 95% CI: 0.0, 26.5) in Tanzania. ESBL positive non-typhoid Salmonella (n = 3) were detected in Burkina Faso only and methicillin-resistant S. aureus (n = 2) were detected in Ghana only. While sequence type (ST)131 predominated among ESBL E. coli (39.1%;9/23), STs among ESBL K. pneumoniae were highly heterogenous. Ciprofloxacin resistant nt Salmonella were commonest in Burkina Faso (50.0%; 6/12) and all harbored qnrB genes. PVL were found in 81.3% S. aureus. Conclusion: Our findings reveal a distinct susceptibility pattern across the various study regions in Africa, with notably high rates of ESBL-producing Enterobacterales and ciprofloxacin-resistant nt Salmonella in Burkina Faso. This highlights the need for local AMR surveillance and reporting of resistances to support appropriate action

    Recent acquisition of Helicobacter pylori by Baka Pygmies

    Get PDF
    Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogastroduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H. pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation, identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist neighbors

    Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana

    Get PDF
    Introduction:; The increasing incidence of infections caused by extended-spectrum beta-lactamase (ESBL)-producing; Escherichia coli; in sub-Saharan Africa is of serious concern. Studies from countries with a highly industrialized poultry industry suggest the poultry production-food-consumer chain as a potential transmission route. In Africa, integrated studies at this human-animal interface are still missing.; Aim:; To determine the molecular epidemiology of ESBL-producing; E. coli; from the intestinal tract of humans and poultry in rural Ghana.; Methods:; During a 6-month period, fecal samples from all children admitted to the Agogo Hospital (Ghana) and broilers at eight poultry farms located within the hospital catchment area were collected. After screening on selective ESBL agar, whole genome sequencing (WGS) was performed on all ESBL isolates. The genomes were analyzed using multilocus sequence typing (MLST), ESBL genotyping and genome-based phylogenetic analyses.; Results:; Of 140 broilers and 54 children, 41 (29%) and 33 (61%) harbored ESBL; E. coli; , respectively, with prevalences on farms ranging between 0 and 85%. No predominant sequence type (ST) was detected among humans. ST10 was most prevalent among broilers (; n; = 31, 69%). The ESBL gene; bla; CTX-M-15; was predominant among broilers (; n; = 43, 96%) and humans (; n; = 32, 97%). Whole-genome-based phylogenetic analysis revealed three very closely related broiler/human isolate clusters (10% of ESBL isolates) with chromosomal and plasmid-mediated ESBL genes.; Conclusion:; The findings demonstrate a high frequency of intestinal ESBL-producing; E. coli; in rural Ghana. Considering that animal and human samples are independent specimens from the same geographic location, the number of closely related ESBL isolates circulating across these two reservoirs is substantial. Hence, poultry farms or meat products might be an important source for ESBL-producing bacteria in rural Ghana leading to difficult-to-treat infections in humans

    Global population genomics of two subspecies of Cryptosporidium hominis during 500 years of evolution

    Get PDF
    Cryptosporidiosis is a major global health problem and a primary cause of diarrhoea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic C. hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes (GIPVs), including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a coevolutionary arms race with the host. Lastly, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, may be driving evolution of more virulent C. hominis variants
    corecore