255 research outputs found

    Observation of ultrafast internal conversion in fullerene anions in solution

    Get PDF
    The ultrafast decay rates of photoexcited View the MathML source ions have been measured in the condensed phase. The mechanism for decay is internal conversion, and the decay rate is a strong function of the charge on the ion. A bottleneck in the ground state recovery has also been detected, and its interpretation is discussed

    Geminate and nongeminate recombination of triplet excitons formed by singlet fission.

    Get PDF
    We report the simultaneous observation of geminate and nongeminate triplet-triplet annihilation in a solution-processable small molecule TIPS-tetracene undergoing singlet exciton fission. Using optically detected magnetic resonance, we identify recombination of triplet pairs directly following singlet fission, as well as recombination of triplet excitons undergoing bimolecular triplet-triplet annihilation. We show that the two processes give rise to distinct magnetic resonance spectra, and estimate the interaction between geminate triplet excitons to be 60 neV.EPSRC [grant no. EP/J017361/1 and EP/G060738/1]. E. Oppenheimer Foundation and St. Catherine's College, Cambridge. NSF [CMMI- 1255494].This is the author accepted manuscript. The final version is available at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.238701

    Factors Impacting Clinicians’ Adoption of a Clinical Photo Documentation App and its Implications for Clinical Workflows and Quality of Care: Qualitative Case Study

    Get PDF
    Background: Mobile health (mHealth) tools have shown promise in clinical photo and wound documentation for their potential to improve workflows, expand access to care, and improve the quality of patient care. However, some barriers to adoption persist. Objective: This study aims to understand the social, organizational, and technical factors affecting clinicians’ adoption of a clinical photo documentation mHealth app and its implications for clinical workflows and quality of care. Methods: A qualitative case study of a clinical photo and wound documentation app called imitoCam was conducted. The data were collected through 20 in-depth interviews with mHealth providers, clinicians, and medical informatics experts from 8 clinics and hospitals in Switzerland and Germany. Results: According to the study participants, the use of mHealth in clinical photo and wound documentation provides numerous benefits such as time-saving and efficacy, better patient safety and quality of care, enhanced data security and validation, and better accessibility. The clinical workflow may also improve when the app is a good fit, resulting in better collaboration and transparency, streamlined daily work, clinician empowerment, and improved quality of care. The findings included important factors that may contribute to or hinder adoption. Factors may be related to the material nature of the tool, such as the perceived usefulness, ease of use, interoperability, cost, or security of the app, or social aspects such as personal experience, attitudes, awareness, or culture. Organizational and policy barriers include the available clinical practice infrastructure, workload and resources, the complexity of decision making, training, and ambiguity or lack of regulations. User engagement in the development and implementation process is a vital contributor to the successful adoption of mHealth apps. Conclusions: The promising potential of mHealth in clinical photo and wound documentation is clear and may enhance clinical workflow and quality of care; however, the factors affecting adoption go beyond the technical features of the tool itself to embrace significant social and organizational elements. Technology providers, clinicians, and decision makers should work together to carefully address any barriers to improve adoption and harness the potential of these tools

    Atlaspix3: A high voltage CMOS sensor chip designed for ATLAS Inner Tracker

    Get PDF
    ATLASpix3 is a 2 x 2 cm2^{2} high voltage CMOS sensor chip designed to meet the specifications of outer layers of ATLAS inner tracker. It is compatible with the hybrid pixel sensor ASIC RD53A in terms of electronic interface and geometry. ATLASpix3 is a depleted monolithic CMOS pixel detector which allows the construction of quad modules of the same size as that of hybrid sensors. The readout scheme can be externally configured as triggered or triggerless column drain readout. The hit information is transmitted through a 1.28 Gbit/s serial link. The interface is based on a single command input that is used for providing clock, trigger and configuration commands. This contribution summarizes the detector architecture with focus on the design of its readout circuitry. In addition, simulation results obtained using ReadOut Modelling Environment (ROME), that led to the design of the readout system are discussed

    High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene.

    Get PDF
    It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene. This produces single-electron effects, in the form of a Coulomb staircase, with a yield of 87 ± 13% in device areas ranging from 2 to 16 μm2, containing up to 650,000 nanoparticles. Our technique offers scalable assembly of ultra-high densities of functional particles or molecules that could be used in electronic integrated circuits, as memories, switches, sensors or thermoelectric generators

    Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells

    Full text link
    Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si) then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization loss and increase the efficiency of conventional Si solar cells. Here we show that a change in the polymorphism of tetracene deposited on Si due to air exposure, facilitates triplet transfer from tetracene into Si. Magnetic field-dependent photocurrent measurements confirm that triplet excitons contribute to the photocurrent. The decay of tetracene delayed photoluminescence was used to determine a triplet transfer time of 215 ns and a maximum yield of triplet transfer into Si of ~50 %. Our study suggests that control over the morphology of tetracene during deposition will be of great importance to boost the triplet transfer yield further
    • …
    corecore