10 research outputs found

    Disruption of Ripple-Associated Hippocampal Activity During Rest Impairs Spatial Learning in the Rat

    Get PDF
    The hippocampus plays a key role in the acquisition of new memories for places and events. Evidence suggests that the consolidation of these memories is enhanced during sleep. At the neuronal level, reactivation of awake experience in the hippocampus during sharp-wave ripple events, characteristic of slow-wave sleep, has been proposed as a neural mechanism for sleep-dependent memory consolidation. However, a causal relation between sleep reactivation and memory consolidation has not been established. Here we show that disrupting neuronal activity during ripple events impairs spatial learning. We trained rats daily in two identical spatial navigation tasks followed each by a 1-hour rest period. After one of the tasks, stimulation of hippocampal afferents selectively disrupted neuronal activity associated with ripple events without changing the sleep-wake structure. Rats learned the control task significantly faster than the task followed by rest stimulation, indicating that interfering with hippocampal processing during sleep led to decreased learning.Institute of Physical and Chemical Research (Japan)National Institutes of Health (U.S.)Human Frontier Science Program (Grant Number: RO1 MH061976

    Neuromodulation et plasticité des propriétés fonctionnelles des neurones corticaux (étude dans les cortex primaires visuel et somatosensoriel)

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Bidirectional control of a one-dimensional robotic actuator by operant conditioning of a single unit in rat motor cortex

    No full text
    International audienceThe design of efficient neuroprosthetic devices has become a major challenge for the long-term goal of restoring autonomy to motor-impaired patients. One approach for brain control of actuators consists in decoding the activity pattern obtained by simultaneously recording large neuronal ensembles in order to predict in real-time the subject's intention, and move the prosthesis accordingly. An alternative way is to assign the output of one or a few neurons by operant conditioning to control the prosthesis with rules defined by the experimenter, and rely on the functional adaptation of these neurons during learning to reach the desired behavioral outcome. Here, several motor cortex neurons were recorded simultaneously in head-fixed awake rats and were conditioned, one at a time, to modulate their firing rate up and down in order to control the speed and direction of a one-dimensional actuator carrying a water bottle. The goal was to maintain the bottle in front of the rat's mouth, allowing it to drink. After learning, all conditioned neurons modulated their firing rate, effectively controlling the bottle position so that the drinking time was increased relative to chance. The mean firing rate averaged over all bottle trajectories depended non-linearly on position, so that the mouth position operated as an attractor. Some modifications of mean firing rate were observed in the surrounding neurons, but to a lesser extent. Notably, the conditioned neuron reacted faster and led to a better control than surrounding neurons, as calculated by using the activity of those neurons to generate simulated bottle trajectories. Our study demonstrates the feasibility, even in the rodent, of using a motor cortex neuron to control a prosthesis in real-time bidirectionally. The learning process includes modifications of the activity of neighboring cortical neurons, while the conditioned neuron selectively leads the activity patterns associated with the prosthesis control

    Representation of Tactile Scenes in the Rodent Barrel Cortex

    No full text
    International audienceAfter half a century of research, the sensory features coded by neurons of the rodent barrel cortex remain poorly understood. Still, views of the sensory representation of whisker information are increasingly shifting from a labeled line representation of single-whisker deflections to a selectivity for specific elements of the complex statistics of the multi-whisker deflection patterns that take place during spontaneous rodent behavior - so called natural tactile scenes. Here we review the current knowledge regarding the coding of patterns of whisker stimuli by barrel cortex neurons, from responses to single-whisker deflections to the representation of complex tactile scenes. A number of multi-whisker tunings have already been identified, including center-surround feature extraction, angular tuning during edge-like multi-whisker deflections, and even tuning to specific statistical properties of the tactile scene such as the level of correlation across whiskers. However, a more general model of the representation of multi-whisker information in the barrel cortex is still missing. This is in part because of the lack of a human intuition regarding the perception emerging from a whisker system, but also because in contrast to other primary sensory cortices such as the visual cortex, the spatial feature selectivity of barrel cortex neurons rests on highly nonlinear interactions that remained hidden to classical receptive field approaches

    Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats

    No full text
    International audienceA majority of whisker discrimination tasks in rodents are performed on head-fixed animals to facilitate tracking or control of the sensory inputs. However, head fixation critically restrains the behavior and thus the incoming stimuli compared with those occurring in natural conditions. In this study, we investigated whether freely behaving rats can discriminate fine tactile patterns while running, in particular when stimuli are presented simultaneously on both sides of the snout. We developed a two-alternative forced-choice task in an automated modified T-maze. Stimuli were either a surface with no bars (smooth) or with vertical bars spaced irregularly or regularly. While running at full speed, rats encountered simultaneously the two discriminanda placed on the two sides of the central aisle. Rats learned to recognize regular bars versus a smooth surface in 8 weeks. They solved the task while running at an average speed of 1 m/s, so that the contact with the stimulus lasted <1 typical whisking cycle, precluding the use of active whisking. Whisker-tracking analysis revealed an asymmetry in the position of the whiskers: they oriented toward the rewarded stimulus during successful trials as early as 60 ms after the first possible contact. We showed that the whiskers and activity in the primary somatosensory cortex are involved during the discrimination process. Finally, we identified irregular patterns of bars that the rats can discriminate from the regular one. This novel task shows that freely moving rodents can make simultaneous bilateral tactile discrimination without whisking.SIGNIFICANCE STATEMENT The whisker system of rodents is a widely used model to study tactile processing. Rats show remarkable abilities in discriminating surfaces by actively moving their whiskers (whisking) against stimuli, typically sampling them several times. This motor strategy affects considerably the way that tactile information is acquired and thus the way that neuronal networks process the information. However, when rats run at high speed, they protract their whiskers in front of the snout without large movements. Here, we investigated whether rats are able to discriminate regular and irregular patterns of vertical bars while running without whisking. We found that the animals can perform a bilateral simultaneous discrimination without whisking and that this involves both whiskers and barrel cortex activity

    A fast intracortical brain–machine interface with patterned optogenetic feedback

    No full text
    International audienceThe development of brain-machine interfaces (BMIs) brings new prospects to patients with a loss of autonomy. By combining online recordings of brain activity with a decoding algorithm, patients can learn to control a robotic arm in order to perform simple actions. However, in contrast to the vast amounts of somatosensory information channeled by limbs to the brain, current BMIs are devoid of touch and force sensors. Patients must therefore rely solely on vision and audition, which are maladapted to the control of a prosthesis. In contrast, in a healthy limb, somatosensory inputs alone can efficiently guide the handling of a fragile object, or ensure a smooth trajectory. We have developed a BMI in the mouse that includes a rich artificial somatosensory-like cortical feedback
    corecore