55 research outputs found

    Hb H disease resulting from the association of an α0-thalassemia allele [-(α)20.5] with an unstable α-globin variant [Hb Icaria]: First report on the occurrence in Brazil

    Get PDF
    Hb H Disease is caused by the loss or inactivation of three of the four functional α-globin genes. Patients present chronic hemolytic anemia and splenomegaly. In some cases, occasional blood transfusions are required. Deletions are the main cause of this type of thalassemia ( α-thalassemia). We describe here an unusual case of Hb H disease caused by the combination of a common α0 deletion [-( α) 20.5 ] with a rare point mutation (c.427T > A), thus resulting in an elongated and unstable α-globin variant, Hb Icaria, (X142K), with 31 additional amino-acid residues. Very high levels of Hb H and Hb Bart's were detected in the patient's red blood cells (14.7 and 19.0%, respectively). This is the first description of this infrequent association in the Brazilian population

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link
    corecore