211 research outputs found

    Multi-channel pulse dynamics in a stabilized Ginzburg-Landau system

    Full text link
    We study the stability and interactions of chirped solitary pulses in a system of nonlinearly coupled cubic Ginzburg-Landau (CGL) equations with a group-velocity mismatch between them, where each CGL equation is stabilized by linearly coupling it to an additional linear dissipative equation. In the context of nonlinear fiber optics, the model describes transmission and collisions of pulses at different wavelengths in a dual-core fiber, in which the active core is furnished with bandwidth-limited gain, while the other, passive (lossy) one is necessary for stabilization of the solitary pulses. Complete and incomplete collisions of pulses in two channels in the cases of anomalous and normal dispersion in the active core are analyzed by means of perturbation theory and direct numerical simulations. It is demonstrated that the model may readily support fully stable pulses whose collisions are quasi-elastic, provided that the group-velocity difference between the two channels exceeds a critical value. In the case of quasi-elastic collisions, the temporal shift of pulses, predicted by the analytical approach, is in semi-quantitative agrement with direct numerical results in the case of anomalous dispersion (in the opposite case, the perturbation theory does not apply). We also consider a simultaneous collision between pulses in three channels, concluding that this collision remains quasi-elastic, and the pulses remain completely stable. Thus, the model may be a starting point for the design of a stabilized wavelength-division-multiplexed (WDM) transmission system.Comment: a text file in the revtex4 format, and 16 pdf files with figures. Physical Review E, in pres

    Three-Dimensional Vortex Solitons in Self-Defocusing Media

    Get PDF
    We demonstrate that families of vortex solitons are possible in a bidispersive three-dimensional nonlinear Schro\ua8dinger equation. These solutions can be considered as extensions of two-dimensional dark vortex solitons which, along the third dimension, remain localized due to the interplay between dispersion and nonlinearity. Such vortex solitons can be observed in optical media with normal dispersion, normal diffraction, and defocusing nonlinearity

    Soliton control in modulated optically-induced photonic lattices

    Full text link
    We discuss soliton control in reconfigurable optically-induced photonic lattices created by three interfering beams. We reveal novel dynamical regimes for strongly localized solitons, including binary switching and soliton revivals through resonant wave mixing.Comment: 7 pages, 5 figures. Content modifie

    Angular Pseudomomentum Theory for the Generalized Nonlinear Schr\"{o}dinger Equation in Discrete Rotational Symmetry Media

    Get PDF
    We develop a complete mathematical theory for the symmetrical solutions of the generalized nonlinear Schr\"odinger equation based on the new concept of angular pseudomomentum. We consider the symmetric solitons of a generalized nonlinear Schr\"odinger equation with a nonlinearity depending on the modulus of the field. We provide a rigorous proof of a set of mathematical results justifying that these solitons can be classified according to the irreducible representations of a discrete group. Then we extend this theory to non-stationary solutions and study the relationship between angular momentum and pseudomomentum. We illustrate these theoretical results with numerical examples. Finally, we explore the possibilities of the generalization of the previous framework to the quantum limit.Comment: 18 pages; submitted to Physica

    Sine-Gordon Soliton on a Cnoidal Wave Background

    Full text link
    The method of Darboux transformation, which is applied on cnoidal wave solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave background. Interesting characteristics of the solution, i.e., the velocity of solitons and the shift of crests of cnoidal waves along a soliton, are calculated. Solutions are classified into three types (Type-1A, Type-1B, Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change

    Demonstration of all-optical beam steering in modulated photonic lattices

    Full text link
    We demonstrate experimentally all-optical beam steering in modulated photonic lattices induced optically by three beam interference in a biased photorefractive crystal. We identify and characterize the key physical parameters governing the beam steering, and show that the spatial resolution can be enhanced by the additional effect of nonlinear beam self-localization.Comment: 3 pages, 3 figure

    Shaping soliton properties in optical Mathieu lattices

    Full text link
    We address basic properties and stability of two-dimensional solitons in photonic lattices induced by the nondiffracting Mathieu beams. Such lattices allow for smooth topological transformation of radially symmetric Bessel lattices into quasi-one-dimensional periodic ones. The transformation of lattice topology drastically affects properties of ground-state and dipole-mode solitons, including their shape, stability and transverse mobility.Comment: 14 pages, 4 figures, to appear in Optics Letter

    Soliton control in chirped photonic lattices

    Full text link
    We study optical solitons in chirped periodic optical lattices whose amplitude or frequency changes in the transverse direction. We discover that soliton propagation in such lattices can be accompanied by the progressive self-bending of the soliton trajectory, and we show that the soliton bending rate and output position can be controlled by varying the lattice depth, as well as the chirp amplitude and frequency modulation rate. This effect has potential applications for controllable soliton steering and routing.Comment: 13 pages, 3 figures, submitted to Journal of the Optical Society of America
    corecore