36 research outputs found

    Biodiversity recovery of Neotropical secondary forests

    Get PDF
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. Copyright © 2019 The Authors, some rights reserved

    Vom Rohstoff zum Verbraucher : aktuelle Konzepte zur Rückverfolgbarkeit in der Lebensmittelwirtscaft und ihre betriebliche Umsetzung

    No full text
    Auf jeder Stufe der Lebensmittelkette muss von der Herstellung bis zum Inverkehrbringen eine Rückverfolgung der Produkte möglich sein. Erzeuger, Verarbeiter, Transportunternehmen und Händler stehen vor der Herausforderung, Systeme zur Rückverfolgbarkeit effizient in ihre Unternehmensprozesse zu integrieren und gegenseitig zu vernetzen. Für die betriebliche Umsetzung werden die rechtlichen Anforderungen skizziert und die Grundlagen eines Rückverfolgbarkeitssystems vorgestellt

    Multimodal spatially resolved optical spectroscoy for marker-free characterization of biological materials

    No full text
    Unter der Zielsetzung der multimodalen, ortsaufgelösten optischen Spektroskopie für die markierungsfreie Charakterisierung biologischer Materialien nach Morphologie und Chemie werden vier Themenschwerpunkte behandelt. 1. Theorie der elastischen / inelastischen Lichtstreuung und laterale Auflösung in der Mikroskopie 2. Erweiterung eines Raman Mikroskops zu einem multimodalen spektralen Imaging System (MSIS) mit Photonenmigrations-Technologie 3. Erweiterung des MSIS zu Super-Resolution Raman Mikroskopie mit einer Festkörper-Immersionslinse 4. Anwendung des entwickelten MSIS auf biologische Materialie

    Extension of solid immersion lens technology to super-resolution Raman microscopy

    Get PDF
    Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe

    Hyperspectral backscatter imaging : a label-free approach to cytogenetics

    No full text
    Current techniques for chromosome analysis need to be improved for rapid, economical identification of complex chromosomal defects by sensitive and selective visualisation. In this paper, we present a straightforward method for characterising unstained human metaphase chromosomes. Backscatter imaging in a dark-field setup combined with visible and short near-infrared spectroscopy is used to monitor morphological differences in the distribution of the chromosomal fine structure in human metaphase chromosomes. The reasons for the scattering centres in the fine structure are explained. Changes in the scattering centres during preparation of the metaphases are discussed. FDTD simulations are presented to substantiate the experimental findings. We show that local scattering features consisting of underlying spectral modulations of higher frequencies associated with a high variety of densely packed chromatin can be represented by their scatter profiles even on a sub-microscopic level. The result is independent of the chromosome preparation and structure size. This analytical method constitutes a rapid, costeffective and label-free cytogenetic technique which can be used in a standard light microscope

    Elastic and inelastic light scattering spectroscopy and its possible use for label-free brain tumor typing

    No full text
    This paper presents an approach for label-free brain tumor tissue typing. For this application, our dual modality microspectroscopy system combines inelastic Raman scattering spectroscopy and Mie elastic light scattering spectroscopy. The system enables marker-free biomedical diagnostics and records both the chemical and morphologic changes of tissues on a cellular and subcellular level. The system setup is described and the suitability for measuring morphologic features is investigated

    Exploring the hidden depth by confocal Raman experiments with variable objective aperture and magnification

    No full text
    The article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2–4 μm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2–160 μm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles

    Ultraviolet-visible/near infrared spectroscopy and hyperspectral imaging to study the different types of raw cotton

    No full text
    Different types of raw cotton were investigated by a commercial ultraviolet-visible/near infrared (UV-Vis/NIR) spectrometer (210–2200 nm) as well as on a home-built setup for NIR hyperspectral imaging (NIR-HSI) in the range 1100–2200 nm. UV-Vis/NIR reflection spectroscopy reveals the dominant role proteins, hydrocarbons and hydroxyl groups play in the structure of cotton. NIR-HSI shows a similar result. Experimentally obtained data in combination with principal component analysis (PCA) provides a general differentiation of different cotton types. For UV-Vis/NIR spectroscopy, the first two principal components (PC) represent 82 % and 78 % of the total data variance for the UV-Vis and NIR regions, respectively. Whereas, for NIR-HSI, due to the large amount of data acquired, two methodologies for data processing were applied in low and high lateral resolution. In the first method, the average of the spectra from one sample was calculated and in the second method the spectra of each pixel were used. Both methods are able to explain ≥90 % of total variance by the first two PCs. The results show that it is possible to distinguish between different cotton types based on a few selected wavelength ranges. The combination of HSI and multivariate data analysis has a strong potential in industrial applications due to its short acquisition time and low-cost development. This study opens a novel possibility for a further development of this technique towards real large-scale processes

    Pigmentation of white, brown and green chicken eggshells analyzed by reflectance, transmittance and fluorescence spectroscopy

    No full text
    We report on the reflectance, transmittance and fluorescence spectra (λ=200–1200nm) of four types of chicken eggshells (white, brown, light green, dark green) measured in situ without pretreatment and after ablation of 20–100 μm of the outer shell regions. The color pigment protoporphyrin IX (PPIX) is embedded in the protein phase of all four shell types as highly fluorescent monomers, in the white and light green shells additionally as non-fluorescent dimers, and in the brown and dark green shells mainly as non-fluorescent poly-aggregates. The green shell colors are formed from an approximately equimolar mixture of PPIX and biliverdin. The axial distribution of protein and color pigments were evaluated from the combined reflectances of both the outer and inner shell surfaces, as well as from the transmittances. For the data generation we used the radiative transfer model in the random walk and Kubelka-Munk approaches

    Apparatus and method for analyzing a flow of material

    No full text
    An apparatus and method for analyzing a flow of material having an inlet region, a measurement range and an outlet region, and having a first diverter and a second diverter, and a deflection area, wherein in a first state of operation, the two diverters form a continuous first material flow space from the inlet region via the first diverter through the measurement range, via the second diverter to the outlet region, and in a second state of operation, form a continuous second material flow space from the inlet region via the first diverter through the deflection area, via the second diverter to the outlet region
    corecore