70 research outputs found
Modeling the oxygen isotope composition of the Antarctic ice sheet and its significance to Pliocene sea leve
Recent estimates of global mean sea level based on the oxygen isotope composition of mid-Pliocene benthic foraminifera vary from 9 to 21 m above present, which has differing implications for the past stability of the Antarctic ice sheet during an interval with atmospheric CO2 comparable to present. Here we simulate the oxygen isotope composition of the Antarctic ice sheet for a range of configurations using isotope-enabled climate and ice sheet models. We identify which ice-sheet configurations are consistent with the oxygen isotope record and suggest a maximum contribution from Antarctica to the mid-Pliocene sea level highstand of ~13 m. We also highlight that the relationship between the oxygen isotope record and sea level is not constant when ice is lost from deep marine basins, which has important implications for the use of oxygen isotopes as a sea level proxy
Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations
Recently obtained geophysical data show sets of parallel erosional features on the Lomonosov
Ridge in the central Arctic Basin, indicative of ice grounding in water depths up to 1280
m. These features have been interpreted as being formed by an ice shelf—either restricted to
the Amerasian Basin (the “minimum model”) or extending across the entire Arctic Basin.
Here, we use a numerical ice sheet-shelf model to explore how such an ice shelf could form.
We rule out the “minimum model” and suggest that grounding on the Lomonosov Ridge
requires complete Arctic ice shelf cover; this places a minimum estimate on its volume, which
would have exceeded that of the modern Greenland Ice Sheet. Buttressing provided by an
Arctic ice shelf would have increased volumes of the peripheral terrestrial ice sheets. An
Arctic ice shelf could have formed even in the absence of a hypothesised East Siberian Ice
Sheet
The Eocene-Oligocene boundary climate transition:an Antarctic perspective
Antarctica underwent a complex evolution over the course of the Cenozoic, which influenced the history of the Earth’s climate system. The Eocene-Oligocene boundary is a divide of this history when the ice-free ‘greenhouse world’ transitioned to the ‘icehouse’ with the glaciation of Antarctica.
Prior to this, Antarctica experienced warm climates, peaking during Early Eocene when tropical-like conditions existed at the margins of the continent where geological evidence is present. Climate signals in the geological record show that the climate then cooled, but not enough to allow the existence of significant ice until the latest Eocene. Glacial deposits from several areas around the continental margin indicate that ice was present by the earliest Oligocene. This matches the major oxygen isotope positive shift captured by marine records. On land, vegetation was able to persist, but the thermophylic plants of the Eocene were replaced by shrubby vegetation with the southern beech Nothofagus, mosses and ferns, which survived in tundra-like conditions. Coupled climate–ice sheet modelling indicates that changing levels of atmospheric CO2 controlled Antarctica’s climate and the onset of glaciation. Factors such as mountain uplift, vegetation changes, ocean gateway opening and orbital forcing all played a part in cooling the polar climate, but only when CO2 levels reached critical thresholds was Antarctica tipped into an icy glacial world.CE acknowledges funding by the Spanish Ministry of Economy, Industry and Competitivity (grants CTM2017-89711-C2-1/2-P), cofunded by the European Union through FEDER funds. IS was supported by the Australian Research Council Discovery Project 180102280. A.T. Kennedy Asser was supported by NERC funding (grant no. NE/L002434/1) Edward Gasson is funded by the Royal Society. EG is funded by the Royal Society. AS thanks the European Research Council for Consolidator Grant #771497 (SPANC)
Bedrock erosion surfaces record former East Antarctic Ice Sheet extent
East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin is used to reconstruct the ice margin during warm intervals of the Oligocene–Miocene. Flat‐lying bedrock plateaus are indicative of an ice sheet margin positioned >400–500 km inland of the modern grounding zone for extended periods of the Oligocene–Miocene, equivalent to a 2 meter rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS
Geological and paleoclimatic evolution of the Southern Ocean-Antarctic system
This chapter explores the co-evolution of the Southern Ocean (SO) and Antarctic Ice Sheet (AIS) from the Eocene-Oligocene Transition (EOT, ~34 million years ago, Ma) through to the Pleistocene (the last 2.6 Ma). The EOT was a period of major tectonically-induced climatic change and development of the SO. The evolution of the topography of the Antarctic continent during the Oligocene and Miocene periods (34-35 Ma) played an important role in the establishment of polar conditions, the expansion of a continental-scale ice sheet, and its interplay with the SO. The subsequent Pliocene and Pleistocene periods (last 5.3 Ma) were times of marked global cooling and the evolution of the SO-Antarctic system during which the Earth transitioned towards bi-polar glaciation, with ice sheet expansion in both hemispheres. Lastly, we discuss the role of interhemispheric heat exchange via atmospheric and oceanic processes to explain warmer-than-preindustrial conditions within some warm interglacial periods and their impact on the SO and AIS
Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ashley, K. E., McKay, R., Etourneau, J., Jimenez-Espejo, F. J., Condron, A., Albot, A., Crosta, X., Riesselman, C., Seki, O., Mass, G., Golledge, N. R., Gasson, E., Lowry, D. P., Barrand, N. E., Johnson, K., Bertler, N., Escutia, C., Dunbar, R., & Bendle, J. A. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Climate of the Past, 17(1), (2021): 1-19, https://doi.org/10.5194/cp-17-1-2021.Over recent decades Antarctic sea-ice extent has increased, alongside widespread ice shelf thinning and freshening of waters along the Antarctic margin. In contrast, Earth system models generally simulate a decrease in sea ice. Circulation of water masses beneath large-cavity ice shelves is not included in current Earth System models and may be a driver of this phenomena. We examine a Holocene sediment core off East Antarctica that records the Neoglacial transition, the last major baseline shift of Antarctic sea ice, and part of a late-Holocene global cooling trend. We provide a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability. Our record, supported by high-resolution ocean modelling, shows that a rapid Antarctic sea-ice increase during the mid-Holocene (∼ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth that slowed basal ice shelf melting. Incorporating this feedback mechanism into global climate models will be important for future projections of Antarctic changes.This research has been supported by the Natural Environment Research Council (CENTA PhD; NE/L002493/1 and Standard Grant Ne/I00646X/1), Japanese Society for the Promotion of Science (JSPS/FF2/60 no. L-11523), NZ Marsden Fund (grant nos. 18-VUW-089 and 15-VUW-131), NSF (grant nos. PLR-1443347 and ACI-1548562), the U.S. Dept. of Energy (grant no. DE-SC0016105), ERC (StG ICEPROXY, 203441; ANR CLIMICE, FP7 Past4Future, 243908), L'Oréal-UNESCO New Zealand For Women in Science Fellowship, University of Otago Research Grant, the IODP U.S. Science Support Program, Spanish Ministry of Science and Innovation (grant no. CTM2017-89711-C2-1-P), and the European Union (FEDER)
Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions
Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknown response of the WAIS to future warming remains a significant challenge for numerical models in quantifying predictions of future sea level rise. Sea level rise is one of the clearest planet-wide signals of human-induced climate change. The Sensitivity of the West Antarctic Ice Sheet to a Warming of 2 °C (SWAIS 2C) Project aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere as well as the associated average global temperature scenarios to and beyond the +2 °C target of the Paris Climate Agreement. Despite efforts through previous land and ship-based drilling on and along the Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for the interdisciplinary scientific opportunities and engineering challenges that an International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtual workshop in October 2020. This international partnership comprised of geologists, glaciologists, oceanographers, geophysicists, microbiologists, climate and ice sheet modelers, and engineers outlined specific research objectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneath the ice sheet. Sub-ice-shelf records have so far proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean surface temperature up to 2 °C above pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 °C global warming threshold (UNFCCC, 2015).This research has been supported by the New Zealand Ministry of Business and Innovation and Employment through the Antarctic Science Platform contract (ANTA1801) Antarctic Ice Dynamics Project (grant no. ASP-021-01) and the US NSF (grant nos. 1443552, 2035035, 2034999, 2035138, and 2034883
Recommended from our members
The Paris Climate Agreement and future sea-level rise from Antarctica
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.Model-generated data associated with this work are available with this paper. Three-dimensional ice-sheet model output associated with Fig. 2 and Extended Data Figs. 3, 5 are available at the ScholarWorks@UMASS Amherst repository (https://doi.org/10.7275/j005-r778). Climate model forcing used in our main ensembles and meltwater-feedback simulations (Fig. 1) are reported in refs. 46,80. Source data are provided with this paper.The Paris Agreement aims to limit global mean warming in the twenty-first century to less than 2 degrees Celsius above preindustrial levels, and to promote further efforts to limit warming to 1.5 degrees Celsius1. The amount of greenhouse gas emissions in coming decades will be consequential for global mean sea level (GMSL) on century and longer timescales through a combination of ocean thermal expansion and loss of land ice2. The Antarctic Ice Sheet (AIS) is Earth’s largest land ice reservoir (equivalent to 57.9 metres of GMSL)3, and its ice loss is accelerating4. Extensive regions of the AIS are grounded below sea level and susceptible to dynamical instabilities5,6,7,8 that are capable of producing very rapid retreat8. Yet the potential for the implementation of the Paris Agreement temperature targets to slow or stop the onset of these instabilities has not been directly tested with physics-based models. Here we use an observationally calibrated ice sheet–shelf model to show that with global warming limited to 2 degrees Celsius or less, Antarctic ice loss will continue at a pace similar to today’s throughout the twenty-first century. However, scenarios more consistent with current policies (allowing 3 degrees Celsius of warming) give an abrupt jump in the pace of Antarctic ice loss after around 2060, contributing about 0.5 centimetres GMSL rise per year by 2100—an order of magnitude faster than today4. More fossil-fuel-intensive scenarios9 result in even greater acceleration. Ice-sheet retreat initiated by the thinning and loss of buttressing ice shelves continues for centuries, regardless of bedrock and sea-level feedback mechanisms10,11,12 or geoengineered carbon dioxide reduction. These results demonstrate the possibility that rapid and unstoppable sea-level rise from Antarctica will be triggered if Paris Agreement targets are exceeded.National Science Foundation (NSF)National Science Foundation (NSF)National Science Foundation (NSF)National Science Foundation (NSF)National Aeronautics and Space Administration (NASA
Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknown response of the WAIS to future warming remains a significant challenge for numerical models in quantifying predictions of future sea level rise. Sea level rise is one of the clearest planet-wide signals of human-induced climate change. The Sensitivity of the West Antarctic Ice Sheet to a Warming of 2 ∘C (SWAIS 2C) Project aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere as well as the associated average global temperature scenarios to and beyond the +2 ∘C target of the Paris Climate Agreement.
Despite efforts through previous land and ship-based drilling on and along the Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for the interdisciplinary scientific opportunities and engineering challenges that an International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtual workshop in October 2020. This international partnership comprised of geologists, glaciologists, oceanographers, geophysicists, microbiologists, climate and ice sheet modelers, and engineers outlined specific research objectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneath the ice sheet. Sub-ice-shelf records have so far proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean surface temperature up to 2 ∘C above pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 ∘C global warming threshold (UNFCCC, 2015)
- …
