16 research outputs found

    PCB congener analysis with Hall electrolytic conductivity detection

    Get PDF
    This work reports the development of an analytical methodology for the analysis of PCB congeners based on integrating relative retention data provided by other researchers. The retention data were transposed into a multiple retention marker system which provided good precision in the calculation of relative retention indices for PCB congener analysis. Analytical run times for the developed methodology were approximately one hour using a commercially available GC capillary column. A Tracor Model 700A Hall Electrolytic Conductivity Detector (HECD) was employed in the GC detection of Aroclor standards and environmental samples. Responses by the HECD provided good sensitivity and were reasonably predictable. Ten response factors were calculated based on the molar chlorine content of each homolog group. Homolog distributions were determined for Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 along with binary and ternary mixtures of the same. These distributions were compared with distributions reported by other researchers using electron capture detection as well as chemical ionization mass spectrometric methodologies. Homolog distributions acquired by the HECD methodology showed good correlation with the previously mentioned methodologies. The developed analytical methodology was used in the analysis of bluefish (Pomatomas saltatrix) and weakfish (Cynoscion regalis) collected from the York River, lower James River and lower Chesapeake Bay in Virginia. Total PCB concentrations were calculated and homolog distributions were constructed from the acquired data. Increases in total PCB concentrations were found in the analyzed fish samples during the fall of 1985 collected from the lower James River and lower Chesapeake Bay. Comparisons between the homolog distribution patterns in the fish samples with the previously mentioned Aroclor distribution patterns suggests a different source of PCBs for different areas. Sediments, oysters (Crassostrea virginica) and brackish water clams (Rangia cuneata) collected from the tidal James River in 1986 were also analyzed. Total PCB concentrations and homolog distributions were calculated for all samples. Sediment total PCB concentrations were relatively constant over the sampling range except in the region of the turbidity maximum which were significantly higher. Total PCB concentrations in the Rangia from the region of the turbidity maximum were the highest of all the biota samples. Rangia homolog distribution patterns from this area were distinctly different from the sediment distribution patterns or the other Rangia distribution patterns in this segment of the river. Alteration of the endemic distribution pattern may be due to physical-chemical processes occurring within the turbidity maximum

    The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction

    Get PDF
    Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction

    Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis

    No full text
    The antithrombotic surface of endothelium is regulated in a coordinated manner. Tissue factor pathway inhibitor (TFPI) localized at the endothelial cell surface regulates the production of FXa by inhibiting the TF/VIIa complex. Systemic homozygotic deletion of the first Kunitz (K1) domain of TFPI results in intrauterine lethality in mice. Here we define the cellular sources of TFPI and their role in development, hemostasis, and thrombosis using TFPI conditional knockout mice. We used a Cre-lox strategy and generated mice with a floxed exon 4 (TFPIFlox) which encodes for the TFPI-K1 domain. Mice bred into Tie2-Cre and LysM-Cre lines to delete TFPI-K1 in endothelial (TFPITie2) and myelomonocytic (TFPILysM) cells resulted in viable and fertile offspring. Plasma TFPI activity was reduced in the TFPITie2 (71% ± 0.9%, P < .001) and TFPILysM (19% ± 0.6%, P < .001) compared with TFPIFlox littermate controls. Tail and cuticle bleeding were unaffected. However, TFPITie2 mice but not TFPILysM mice had increased ferric chloride–induced arterial thrombosis. Taken together, the data reveal distinct roles for endothelial- and myelomonocytic-derived TFPI
    corecore