1,635 research outputs found

    The H3+ + H2 isotopic system: origin of deuterium astrochemistry

    Get PDF
    Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molecular deuteration. Despite the cosmic D/H ratio of 10^{-5}, molecular species in prestellar cores are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium enrichment promoted by low temperatures is the work of H3+. It is the key species which unlocks the deuterium from its HD reservoir via reactions like H3+ + HD -> H2D+ + H_2 and drags it further to other species in successive reactions. For this reason, the H3+ + H2 isotopic system is outstandingly critical for the astrochemistry of cold environments. However, its understanding is yet incomplete and insufficient. This thesis thus focuses on the H3+ + H2 isotopic system from a theoretical, experimental and astronomical point of view giving a particular look into the role of nuclear spins. As a first step, the stringent nuclear spin selection rules in associative, dissociative and reactive collisions are investigated. This purely theoretical study zooms into the details of the nuclear spin wavefunctions and shows that their permutation symmetry representation is necessary and sufficient, contrary to their angular momentum representation. Additionally, a new deterministic interpretation of nuclear spins in chemical reactions is proposed. Based on these considerations, a complete set of state-to-state rate coefficients for all H3+ + H2 isotopic variants is calculated using a microcanonical model leaned on phase space theory. An experimental study is conducted in parallel with a 22-pole ion trap apparatus in order to inspect the influences of temperature and H2 ortho-to-para ratio. The good overall agreement between experimental and theoretical results supports the validity and utility of the calculated set of rate coefficients. Furthermore, the potentiality of the 22-pole ion trap apparatus is explored via the Laser Induced Reaction (LIR) technique applied to our system of interest. High resolution overtone, combination and fundamental vibrational spectroscopy of H2D+ and D2H+ is thereby achieved with cw-OPO and diode lasers. Finally, astronomical implications are inferred on an observational basis through the case of the prestellar core L183 using simple chemical models which account for the ortho, meta and para characters of the H3+ and H2 isotopologues and rely on the rate coefficients derived in this thesis. Above all, the results show that the non-thermal ortho-to-para ratio of H2 is a serious limiting factor for the enhancement of deuterium fractionations. It is a first-class parameter for the astrochemistry of very cold interstellar medium

    origin of deuterium astrochemistry

    Get PDF
    Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molecular deuteration. Despite the cosmic D/H ratio of 10^{-5}, molecular species in prestellar cores are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium enrichment promoted by low temperatures is the work of H3+. It is the key species which unlocks the deuterium from its HD reservoir via reactions like H3+ + HD -> H2D+ + H_2 and drags it further to other species in successive reactions. For this reason, the H3+ + H2 isotopic system is outstandingly critical for the astrochemistry of cold environments. However, its understanding is yet incomplete and insufficient. This thesis thus focuses on the H3+ + H2 isotopic system from a theoretical, experimental and astronomical point of view giving a particular look into the role of nuclear spins...thesi

    Chemical modeling of L183 (= L134N) : an estimate of the ortho/para H2 ratio

    Get PDF
    Context. The high degree of deuteration observed in some prestellar cores depends on the ortho-to-para H2 ratio through the H3+ fractionation. Aims. We want to constrain the ortho/para H2 ratio across the L183 prestellar core. This is mandatory to correctly describe the deuter- ation amplification phenomenon in depleted cores such as L183 and to relate the total (ortho+para) H2D+ abundance to the sole ortho-H2D+ column density measurement. Methods. To constrain this ortho/para H2 ratio and derive its profile, we make use of the N2D+ /N2H+ ratio and of the ortho-H2D+ observations performed across the prestellar core. We use two simple chemical models limited to an almost totally depleted core description. New dissociative recombination and trihydrogen cation-dihydrogen reaction rates (including all isotopologues) are presented in this paper and included in our models. Results. We estimate the H2D+ ortho/para ratio in the L183 cloud, and constrain the H2 ortho/para ratio : we show that it is varying across the prestellar core by at least an order of magnitude being still very high (~0.1) in most of the cloud. Our time-dependent model indicates that the prestellar core is presumably older than 1.5-2 x 10^5 years but that it may not be much older. We also show that it has reached its present density only recently and that its contraction from a uniform density cloud can be constrained. Conclusions. A proper understanding of deuteration chemistry cannot be attained without taking into account the whole ortho/para family of molecular hydrogen and trihydrogen cation isotopologues as their relations are of utmost importance in the global scheme. Tracing the ortho/para H2 ratio should also give useful constraints on the dynamical evolution of prestellar cores

    Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows

    Get PDF
    Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4–6 weeks to calculate the CH4 yield (CH4y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl‐coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial least‐squares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane‐reduction selection programmes in the dairy cattle industry provided they are heritable.info:eu-repo/semantics/publishedVersio

    Long‐term change of phytoplankton in Lake Kivu: The rise of the greens

    Full text link
    Phytoplankton time‐series enable the observation of recurrent seasonal patterns on community composition, but drastic shifts in community structure are rarely observed, unless linked to anthropogenic impacts (e.g. changes in nutrient inputs). Here, we report a unique case of non‐seasonal, multiannual regime shift of phytoplankton community structure in Lake Kivu, East Africa, and explore the possible causes for such changes. 2. We recorded phytoplankton biomass every 2 weeks over a period of 12 years (from 2002 to 2015). Phytoplankton community previously dominated by cyanobacteria and diatoms changed considerably from 2012, with a conspicuous rise in the biomass of green algae (from 3 to 33% lake‐wide), and a decline of cryptophytes and cyanobacteria along with an increase in total chlorophyll a concentration. Concomitantly, we observed significant differences in the mixed layer depth between the two periods, resulting from changes in the thermal gradient. The euphotic zone depth was also reduced in 2012–2015, probably from the higher phytoplankton biomass. Moreover, mean particulate nitrogen and phosphorus increased as well as the particulate N:P ratio. 3. Desmids (Cosmarium laeve) now dominate the mixolimnion, probably due to atelomixis, observed in high‐frequency temperature measurements. We believe that decadal or multidecadal variability of climate on the Indian Ocean may be the reason for this regime shift in thermal stratification, with a strong impact in phytoplankton community structure. 4. In conclusion, our study demonstrates that tropical lakes may be subject to nonseasonal fluctuations that generate multiannual regime shifts. These regime shifts have probably never been reported previously because of the lack of long phytoplankton time‐series in low latitudes.Peer reviewe

    Retrograde movements determine effective stem cell numbers in the intestine

    Get PDF
    The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts(1-3). Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.Peer reviewe

    3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge

    Full text link
    Teeth localization, segmentation, and labeling from intra-oral 3D scans are essential tasks in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, developing automated algorithms for teeth analysis presents significant challenges due to variations in dental anatomy, imaging protocols, and limited availability of publicly accessible data. To address these challenges, the 3DTeethSeg'22 challenge was organized in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2022, with a call for algorithms tackling teeth localization, segmentation, and labeling from intraoral 3D scans. A dataset comprising a total of 1800 scans from 900 patients was prepared, and each tooth was individually annotated by a human-machine hybrid algorithm. A total of 6 algorithms were evaluated on this dataset. In this study, we present the evaluation results of the 3DTeethSeg'22 challenge. The 3DTeethSeg'22 challenge code can be accessed at: https://github.com/abenhamadou/3DTeethSeg22_challengeComment: 29 pages, MICCAI 2022 Singapore, Satellite Event, Challeng

    Estimating the Reproducibility of Experimental Philosophy

    Get PDF
    Responding to recent concerns about the reliability of the published literature in psychology and other disciplines, we formed the X-Phi Replicability Project (XRP) to estimate the reproducibility of experimental philosophy (osf.io/dvkpr). Drawing on a representative sample of 40 x-phi studies published between 2003 and 2015, we enlisted 20 research teams across 8 countries to conduct a high-quality replication of each study in order to compare the results to the original published findings. We found that x-phi studies – as represented in our sample – successfully replicated about 70% of the time. We discuss possible reasons for this relatively high replication rate in the field of experimental philosophy and offer suggestions for best research practices going forward
    corecore