18 research outputs found

    Rhodium-Catalyzed Pauson−Khand Reaction Using a Small-Bite-Angle P‑Stereogenic C1‑Diphosphine Ligand

    Get PDF
    The asymmetric Pauson−Khand reaction catalyzed by [Rh(COD)(MaxPHOS)]BF4 is described. Several 1,6-enynes have been chosen as model substrates affording moderate yields and selectivities of up to 86% ee. Besides binap-type ligands, we have demonstrated that the Pstereogenic C1-symmetry small-bite-angle ligand MaxPHOS is a viable ligand in this process. The formation of [2+2+2] cycloaddition compounds has shown to be a competitive process. A mechanism is proposed to account for the observed results. The intermediate rhodium dicarbonyl complex 6 was synthesized, and its solid-state structure was elucidated by X-ray crystallography

    Molecular basis of the selective binding of MDMA enantiomers to the Alpha4Beta2 nicotinic receptor subtype: synthesis, pharmacological evaluation and mechanistic studies

    Get PDF
    The α4β2 nicotinic acetylcholine receptor (nAChR) is a molecular target of 3,4-methylenedioxymethamphetamine (MDMA), a synthetic drug also known as ecstasy, and it modulates the MDMA-mediated reinforcing properties. However, the enantioselective preference of the α4β2 nAChR subtype still remains unknown. Since the two enantiomers exhibit different pharmacological profiles and stereoselective metabolism, the aim of this study is to assess a possible difference in the interaction of the MDMA enantiomers with this nAChR subtype. To this end, we report a novel simple, yet highly efficient enantioselective synthesis of the MDMA enantiomers, in which the key step is the diastereoselective reduction of imides derived from optically pure tert-butylsulfinamide. The enantioselective binding to the receptor is examined using [3H]epibatidine in a radioligand assay. Even though the two enantiomers induced a concentration-dependent binding displacement, (S)-MDMA has an inhibition constant 13-fold higher than (R)-MDMA, which shows a Hill's coefficient not significantly different from unity, implying a competitive interaction. Furthermore, when NGF-differentiated PC12 cells were pretreated with the compounds, a significant increase in binding of [3H]epibatidine was found for (R)-MDMA, indicating up-regulation of heteromeric nAChR in the cell surface. Finally, docking and molecular dynamics studies have been used to identify the binding mode of the two enantiomers, which provides a structural basis to justify the differences in affinity from the differential interactions played by the substituents at the stereogenic center of MDMA. The results provide a basis to explore the distinct psychostimulant profiles of the MDMA enantiomers mediated by the α4β2 nAChR subtype

    Application of Quality by Design to the robust preparation of a liposomal GLA formulation by DELOS-susp method

    Get PDF
    Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients. In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability. Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease. Through a risk analysis and a Design of Experiments (DoE), we obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing

    Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion

    Get PDF
    The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.This work was supported by MICINN (PID2019-105622RBI00, MAT2016-80826-R, PID2019-111682RB-I00, PID2020-115296RA-I00, CTQ2015-66194-R; SAF2014-60138-R, RTI2018-093831-B-I00, and PDC2021-121481-I00); Instituto de Salud Carlos III (ISCIII) through the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (FlexQS-skin, FlexCAB, BBN18PI01, BBN20PIV02, and CB/06/0074); Generalitat de Catalunya (grants 2017-SGR-918, 2017-SGR-229, 2017-SGR-1442, 2017-SGR-1439); the Fundació Marató de TV3 (Nr. 201812); the COST Action CA15126 Between Atom and Cell, and “ERDF A way of making Europe”. J.G. acknowledges financial support from the Ramón y Cajal Program (RYC-2017-22614) from MICINN and the Max Planck Society through the Max Planck Partner Group “Dynamic Biomimetics for Cancer Immunotherapy” in collaboration with the Max Planck Institute for Medical Research (Heidelberg, Germany). This work has received funding from the European Union’s Horizon 2020 research and innovation program through grant agreements 953110 (PHOENIX), 720942 (Smart4Fabry), 101007804 (MICRO4NANO), and 801342 (granted to the Agency for Business Competitiveness ACCIÓ through a Tecniospring Industry fellowship (TECSPR19-1-0065)). ICMAB acknowledges support from MICINN through the “‘Severo Ochoa”’ Programme for Centres of Excellence in R&D (CEX2019-000917-S). J.M. acknowledges a “Juan de la Cierva” fellowship from MICINN. J.T-M. acknowledges an FI-AGAUR grant (2020FI_B2 00137) from Generalitat de Catalunya and the European Social Fund. We also acknowledge the ICTS “NANBIOSIS for the support of the Synthesis of Peptides Unit (U3) at IQAC–CSIC (https://www.nanbiosis.es/portfolio/u3-synthesis-of-peptides-unit/) and the Biomaterial Processing and Nanostructuring Unit (U6) at ICMAB-CSIC (https://www.nanbiosis.es/portfolio/u6-biomaterial-processing-and-nanostructuring-unit/). We are grateful to the SMP unit of the Scientific and Technological Centers of University of Barcelona (CCiTUB). This work has been developed under the “Biochemistry, Molecular Biology and Biomedicine” and “Materials Science” Ph.D. programs of Universitat Autònoma de Barcelona (UAB).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Catálisis Asimétrica con complejos de rodio e iridio. Aplicación en síntesis de compuestos biológicamente activos

    Get PDF
    Tesi realitzada a l'Institut de Recerca Biomèdica de Barcelona (IRBB)La hidrogenación catalítica asimétrica es uno de los métodos más importantes en síntesis orgánica. Este proceso permite acceder a importantes productos quirales a escala multigramo utilizando hidrógeno (que es barato) y pequeñas cantidades de catalizador. Dichas hidrogenaciones requieren el empleo de complejos metálicos que contienen ligandos quirales y se presentan como un método muy atractivo desde el punto de vista de la economía atómica. Hasta el momento, se han descrito una amplia variedad de ligandos quirales empleados en la hidrogenación enantioselectiva. En nuestro grupo de investigación, existe una larga trayectoria de trabajo en este campo y recientemente se han diseñado y sintetizado ligandos con quiralidad en el átomo de fósforo, siendo la aminodifosfina MaxPHOS uno de los ejemplos. El complejo Rh-MaxPHOS ha ofrecido excelentes excesos enantioméricos en la hidrogenación asimétrica de a y ß dehidro aminoácidos. Estos buenos resultados abrían la puerta a una exploración más detallada sobre la capacidad de hidrogenación de este complejo ante diversos tipos de sustratos. Así, el primer objetivo de la presente tesis doctoral consistió en ampliar el alcance de este catalizador en una galería de N-acil-enamidas (ß-cetoenamidas. enamidas cíclicas tri-sustituidas y a-heteroarilenamidas) que posteriormente dieran lugar a aminas quirales con interés farmacológico. Por otro lado, el complejo Rh-MaxPHOS fue aplicado por primera vez a la reacción de Pauson-Khand intramolecular de una forma satisfactoria obteniendo moderados rendimientos (30-70%) y elevadas purezas ópticas (hasta un 86%) para diversos 1,6-eninos. Por consiguiente, se pensó en preparar otros compuestos metálicos con la misma aminodifosfina. Concretamente, se consideró en coordinar la difosfina MaxPHOS con iridio como metal y aplicar el compuesto en catálisis asimétrica. Específicamente, se aplicó en la hidrogenación asimétrica de enlaces C=C (olefinas trisustituidas con grupo polar adyacente) y C=N (iminas), donde la hidrogenación con rodio no permite reducir u obtener los productos finales deseados con elevada pureza óptica. En el marco del estudio de la hidrogenación asimétrica con nuestro catalizador quiral Rh-MaxPHOS, se decidió extender esta metodología a otro tipo de compuestos que, a su vez, también dieran lugar a productos de interés farmacológico. El grupo de la profesora Escubedo estaba interesada en el estudio de los efectos biológicos de cada enantiómero del MDMA, más conocido como éxtasis (3,4-metilenedioximetanfetamina), para analizar su interacción en los receptores nicotínicos acetilcolina. Teniendo en cuenta los buenos resultados obtenidos con el complejo Rh-MaxPHOS en la hidrogenación de varios tipos de sustratos, se planteó una colaboración en la que propusimos una síntesis asimétrica mediante la hidrogenación enantioselectiva de ß-aril-enamidas catalizada por el complejo de rodio (I) Rh-7. Desafortunadamente, esta ruta sintética no ofreció buenos resultados y se buscó una vía alternativa. Con este propósito, visualizamos una nueva y eficiente síntesis de ambos enantiómeros del MDMA basada en una reducción diastereomerica de iminas derivadas de la terc-butilsulfinamida ópticamente pura, que proporciona un simple y práctico método de obtener ambos enantiómeros del MDMA. Otra aplicación en catálisis asimétrica con el complejo Rh-7, se basó en llevar a cabo una nueva síntesis del ácido 2-aminosubérico, teniendo como etapa clave la hidrogenación enantioselectiva. El ácido 2-aminosubérico se ha utilizado en la síntesis de análogos de péptidos bioactivos como la oxitocina, vasopresina, somatostatina o calcitonina como cadena metilénica metabólicamente estable en la sustitución del puente disulfuro entre cisteínas. En este sentido, una de las líneas abiertas en nuestro grupo de investigación es la síntesis de derivados de somatostatina. Así, nos planteamos el diseño y efectuamos una síntesis de péptidos análogos de somatostatina mediante la introducción del ácido 2-aminosubérico en sustitución del puente disulfuro en la cadena peptídica, manteniendo otros aminoácidos no naturales en la secuencia que habían ofrecido una elevada actividad biológica. También, quisimos estudiar la importancia de la longitud de la cadena metilénica en este péptido cíclico. Así, sintetizamos otro análogo peptídico mediante la introducción de un aminoácido natural comercialmente disponible (Fmoc-D-Glutámico) en lugar del ácido 2-aminosubérico y de este modo, comparamos sus estructuras por RMN.Asymmetric catalytic hydrogenation is one of the most important methodologies in organic synthesis. This process allows significant access to multi-gram scale chiral products using inexpensive hydrogen and low catalyst loadings. Such hydrogenations require the use of metal complexes containing chiral ligands, which are attractive in terms of atomic economy. So far a variety of chiral ligands have been described and used in enantioselective hydrogenations. In our research group, there is a long history of work in this field and we have recently designed and synthesized ligands with chirality at the phosphorus atom; aminodiphosphine MaxPHOS being one example. The Rh-complex with MaxPHOS ligand (Rh-7) has offered excellent enantiomeric excesses (ee) in the asymmetric hydrogenation of a and ß dehydroaminoacids. These promising results opened the door to a more detailed hydrogenation study of this complex with various types of substrates. The first objective of this thesis was to expand the scope of this catalyst to different N-acyl enamides (ß-ketoenamides, cyclic tri-substituted enamides and a-heteroarylenamides) which subsequently give rise to chiral amines of pharmacological interest. Furthermore, the Rh-MaxPHOS complex was for first time applied to the intramolecular Pauson-Khand reaction satisfactorily obtaining moderate yields (30-70%) and high optical purity (up to 86%) for various 1,6 -enines. Therefore, other metal compounds with the same aminodiphosphine were prepared. Specifically, it coordinated to iridium and applied in asymmetric catalysis. It was then applied in the asymmetric hydrogenation of C = C (tri-substituted olefins with adjacent polar group) and C = N (imines), where the hydrogenation with rhodium fails to reduce the desired final products with high optical purity. Under the study of the asymmetric hydrogenation with our chiral catalyst Rh-MaxPHOS (Rh-7), it was decided to extend this approach to other types of compounds which, in turn, also gave rise to products of pharmacological interest. The group of the professor Elena Escubedo was interested in the study of the biological effects of each enantiomer of MDMA, known as ecstasy (3,4-methylenedioxymethamphetamine), to analyze their interaction in the nicotinic acetylcholine receptors. Taking into account the promising results obtained with the Rh-7 complex in the hydrogenation of various types of substrates, a partnership in which we proposed an asymmetric synthesis by enantioselective hydrogenation of ß-aryl-enamides catalyzed by rhodium complex was proposed employing Rh-7. Unfortunately, this synthetic route did not offer good results and an alternative route was sought. For this purpose, we envisioned a new and efficient synthesis of both enantiomers of MDMA based optically pure diastereomeric reduction of imines derived from tert-butylsulfinamide, which provides a simple and practical method of obtaining both enantiomers of MDMA. Another application in asymmetric catalysis with Rh-7 complex was based on performing a new synthesis of 2-aminosuberic acid, with the key enantioselective hydrogenation stage. 2-aminosuberic acid has been used in the synthesis of analogues of bioactive peptides such as oxytocin, vasopressin, somatostatin, or calcitonin as a metabolically stable methylene chain in the replacement of the disulfide bridge between cysteines. In this sense, one of the open lines in our research group is the synthesis of analogues of somatostatin. Thus, we designed and synthesized analogues of somatostatin peptides with 2-aminosuberic acid replacing the disulfide bridge in the peptide chain, keeping other unnatural amino acids in the sequence that had previously displayed a high biological activity. Also, we wanted to study the importance of the methylene chain length of this cyclic peptide. Thus, another peptide analog was synthesized by introducing a commercially available natural amino acid (Fmoc-D-Glutamic acid) instead of 2-aminosuberic acid and we compared their structures by NMR

    Synthesis of Stable Cholesteryl–Polyethylene Glycol–Peptide Conjugates with Non-Disperse Polyethylene Glycol Lengths

    No full text
    A method for conjugating cholesterol to peptide ligands through non-disperse polyethylene glycol (ND-PEG) through a non-hydrolysable linkage is described. The iterative addition of tetraethylene glycol macrocyclic sulfate to cholesterol (Chol) renders a family of highly pure well-defined Chol-PEG compounds with different PEG lengths from 4 up to 20 ethylene oxide units, stably linked through an ether bond. The conjugation of these Chol-PEG compounds to the cyclic (RGDfK) peptide though Lys5 side chains generates different lengths of Chol-PEG-RGD conjugates that retain the oligomer purity of the precursors, as analysis by HRMS and NMR has shown. Other derivatives were synthesized with similar results, such as Chol-PEG-OCH3 and Chol-PEG conjugated to glutathione and Tf1 peptides through maleimide–thiol chemoselective ligation. This method allows the systematic synthesis of highly pure uniform stable Chol-PEGs, circumventing the use of activation groups on each elongation step and thus reducing the number of synthesis steps.We thank M. Dí az and M. Vilaseca (Mass Spectrometry Core Facility, IRB Barcelona) for the support with the MS data and the Peptide Synthesis Unit (U3) of Nanbiosis ICTS. This work was supported by the Spanish Government (no. RTC-2014- 2207-1, Centers of Excellence Severo Ochoa), CIBER-BBN (Lipocell, no. CB06-01-0074), European Community Horizon 2020 (Smart4Fabry, no. 720942), IRB Barcelona, BBVA foundation (M.J.M.), and Generalitat de Catalunya (nos. 2017-SGR-1439 and 2017-SGR-50 and the CERCA Programme). M.J.M. is an ICREA Programme Investigator.Peer reviewe

    Rhodium-Catalyzed Pauson–Khand Reaction Using a Small-Bite-Angle P

    No full text
    The asymmetric Pauson–Khand reaction catalyzed by [Rh(COD)(MaxPHOS)]BF4 is described. Several 1,6-enynes have been chosen as model substrates affording moderate yields and selectivities of up to 86% ee. Besides binap-type ligands, we have demonstrated that the P-stereogenic C1-symmetry small-bite-angle ligand MaxPHOS is a viable ligand in this process. The formation of [2+2+2] cycloaddition compounds has shown to be a competitive process. A mechanism is proposed to account for the observed results. The intermediate rhodium dicarbonyl complex 6 was synthesized, and its solid-state structure was elucidated by X-ray crystallography.Fil: Cristóbal Lecina, Edgar. Barcelona Institute of Science and Technology; EspañaFil: Costantino, Andrea Rosana. Barcelona Institute of Science and Technology; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Grabulosa, Arnald. Universidad de Barcelona; EspañaFil: Riera, Antoni. Barcelona Institute of Science and Technology; EspañaFil: Verdaguer, Xavier. Universidad de Barcelona; España. Barcelona Institute of Science and Technology; Españ

    Functionalized oxide biosensor interfaces for in-situ, acid-modulated peptide synthesis

    No full text
    In this paper we report a novel acid-modulated strategy for peptide microarray production on biosensor interfaces. We have initially selected controlled pore glass (CPG) as support for solid phase peptide synthesis (SPPS) to implement a chemistry that can be efficiently performed at the interface of multiple FET sensors, eventually to generate label-free peptide microarrays for protein screening. Our chemistry uses temporary protection of the N-terminal amino function of each amino acid building block with a tert-butyloxycarbonyl (Boc) group that can be removed after each SPPS cycle, in combination with semi-permanent protection of the side chains of trifunctional amino acid residues. Such protection scheme, with a well-proven record of application in conventional, batchwise SPPS, has been fine tuned for optimal performance on CPG and, from there, translated to SPR chips that allow layer-by-layer monitoring of amino acid coupling. Our results validate this acid-modulated synthesis as a feasible approach for producing peptides in high yield and purity on flat glass surfaces such as those in bio-FETs

    Rhodium-Catalyzed Pauson−Khand Reaction Using a Small-Bite-Angle P‑Stereogenic C1‑Diphosphine Ligand

    No full text
    The asymmetric Pauson−Khand reaction catalyzed by [Rh(COD)(MaxPHOS)]BF4 is described. Several 1,6-enynes have been chosen as model substrates affording moderate yields and selectivities of up to 86% ee. Besides binap-type ligands, we have demonstrated that the Pstereogenic C1-symmetry small-bite-angle ligand MaxPHOS is a viable ligand in this process. The formation of [2+2+2] cycloaddition compounds has shown to be a competitive process. A mechanism is proposed to account for the observed results. The intermediate rhodium dicarbonyl complex 6 was synthesized, and its solid-state structure was elucidated by X-ray crystallography

    MaxPHOS Ligand: PH/NH Tautomerism and Rhodium- Catalyzed Asymmetric Hydrogenations

    No full text
    MaxPHOS is an active and robust P-stereogenic ligand for asymmetric catalysis. The presence of an NH bridge between the two phosphine moieties allows the NH/PH tautomerism to take place. The neutral ligand, in which the NH form predominates, is an air-sensitive compound. However, protonation of MaxPHOS leads to the stable PH form of the ligand, in which the overall positive charge is distributed on both P centers. This protonation turns the MaxPHOS·HBF4 salt 3 into an airstable compound both in the solid state and in solution. The salt 3 is also a convenient precursor for the preparation of rhodium(I) complexes by direct ligand exchange with the complex [Rh(acac)(cod)]. Finally, the corresponding rhodium(I)-MaxPHOS complex was tested in the asymmetric hydrogenation of a wide range of substrates. The complex proved to be a highly selective and robust system in these reactions.Fil: Cristóbal Lecina, Edgar. Institute for Research in Biomedicine ; EspañaFil: Etayo, Pablo. Institut Català d'Investigació Química; EspañaFil: Doran, Séan. Institute for Research in Biomedicine ; EspañaFil: Revés, Marc. Institute for Research in Biomedicine ; EspañaFil: Martín Gago, Pablo. Institute for Research in Biomedicine ; EspañaFil: Grabulosa, Arnald. Universidad de Barcelona; EspañaFil: Costantino, Andrea Rosana. Institute for Research in Biomedicine ; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Vidal Ferran, Anton. Institut Català d'Investigació Química; España. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Riera, Antoni. Universidad de Barcelona; España. Institute for Research in Biomedicine ; EspañaFil: Verdaguer, Xavier. Institute for Research in Biomedicine ; España. Universidad de Barcelona; Españ
    corecore