4,543 research outputs found

    Formation of gold nanorods by a stochastic "popcorn" mechanism

    Full text link
    Gold nanorods have significant technological potential and are of broad interest to the nanotechnology community. The discovery of the seeded, wet-chemical synthetic process to produce them may be regarded as a landmark in the control of metal nanoparticle shape. However, the mechanism by which the initial spherical gold seeds acquire anisotropy is a critical, yet poorly understood, factor. Here we examine the very early stages of rod growth using a combination of techniques including cryogenic transmission electron microscopy, optical spectroscopy, and computational modeling. Reconciliation of the available experimental observations can only be achieved by invoking a stochastic, "popcorn"-like mechanism of growth, in which individual seeds lie quiescent for some time before suddenly and rapidly growing into rods. This is quite different from the steady, concurrent growth of nanorods that has been previously generally assumed. Furthermore we propose that the shape is controlled by the ratio of surface energy of rod sides to rod ends, with values of this quantity in the range of 0.3-0.8 indicated for typical growth solutions. © 2012 American Chemical Society

    Spectrally selective coatings of gold nanorods on architectural glass

    Full text link
    Infrared-blocking coatings on window glass can be produced by dispersing gold nanorods into a polymer coating. The spectral selectivity of the coating is controlled by the shape and aspect ratio of the nanoparticles, which are in turn determined by the conditions applied during their synthesis. Coatings of nanorods in polyvinyl alcohol were deposited onto glass and characterized in both laboratory and sun-lit conditions. Selective attenuation of the near-infrared was demonstrated with the test panels transmitting approximately one-third of the incident solar radiation and absorbing nearly two-thirds. The high absorptive cross sections of the gold nanorods suggest that they can be applied in efficacious coatings at relatively low volume fractions. © 2010 Springer Science+Business Media B.V

    Development of new methods for the synthesis of plasmonically-active precious metal rods and shells

    Full text link
    University of Technology, Sydney. Faculty of Science.The ability to synthesise metal nanoparticles with various geometries has vastly improved in recent years. The plasmon resonance, the mechanism responsible for the optical response of metal nanoparticles, is highly sensitive to their geometry. This is the primary reason for the current interest in developing syntheses that produce a distinct geometry. In contrast, polydisperse samples of nanoparticles have relatively poorly defined plasmon resonances. Although nanospheres are still the most common geometry of metal nanoparticle synthesised, there is rapidly increasing interest in nanorods and nanoshells on account of their more flexible optical response. Therefore, developing a reliable synthesis for nanorods and nanoshells has been a target of much recent research. Gold is the most popular metal for the synthesis of plasmonically active nanoparticles. In this thesis I present a development of synthesis methods for plasmonically active nanoparticles and a characterisation of the resulting products. In my work I have synthesised gold nanorods, a mixed dispersion of gold nanorings and hollow gold nanoparticles, silver nanorods and platinum nanospheres. To characterise these nanoparticles I have used a range of techniques including UV-Vis-NIR spectrometry, SEM, TEM, cryo-TEM, SAXS and electrodynamics simulations. Early in my work I recognised that gold nanorods provided the best opportunities to achieve large scale applications. Some significant drawbacks in the existing methods of synthesis were identified, such as the inefficient reaction of gold. This realisation led me to focus the majority of my efforts on improving the understanding of the mechanisms involved in the synthesis of gold nanorods and, in particular, on the all-important transition from spherical seed particle to anisotropic rod. The nearest competitor to nanorods, with respect to applications, is nanoshells and so I have also compared these two geometries in the literature review. From the exhaustive work presented in this thesis I present a set of optimum conditions for the synthesis of gold nanorods. Evidence for the disproportionation of gold (I) bromide as the mechanism of gold metal formation in the gold nanorod synthesis is presented. I also show that it is necessary to sacrifice control of the aspect ratio of the nanorods produced in order to improve the efficiency of the reaction. I use a coreductant to show that the formation of nanorods is dependent on the effectiveness of the reductant that is present after the addition of the gold nanoparticle seeds. It is also apparent that it is possible to achieve a range of aspect ratios as well as particle dimensions by varying the amount of seed particles added to the growth solution. I have used a range of experimental techniques including cryo-TEM, SEM, UV-Vis spectroscopy and small angle X-ray scattering to probe the physical dimensions and optical properties of gold nanorods at various stages of their growth and from this I have developed a new growth model. Simulations of the optical properties of the intermediate nanoparticle geometries observed support this new growth model

    Synthesis of hollow gold nanoparticles and rings using silver templates

    Full text link
    Gold nanoshells have gained attention recently due to their versatile optical properties. In particular, their spectrally selective extinction has been exploited for experimental medical applications, functional coatings and contrast enhancement for analytical techniques. Here we discuss nanoshells and the formation of gold nanorings by the galvanic replacement of Ag nanosphere template particles. Hollow Au/Ag nanoshells can be converted to nanorings upon addition of excess HAuCl4. Nanorings present a distinct particle geometry, with optical properties exhibiting characteristics of both nanorods and nanoshells. © 2008 IEEE

    Elevated arousal at time of decision-making is not the arbiter of risk avoidance in chickens

    Get PDF
    The somatic marker hypothesis proposes that humans recall previously experienced physiological responses to aid decision-making under uncertainty. However, little is known about the mechanisms used by non-human animals to integrate risk perception with predicted gains and losses. We monitored the behaviour and physiology of chickens when the choice between a high-gain (large food quantity), high-risk (1 in 4 probability of receiving an air-puff) option (HGRAP) or a low-gain (small food quantity), no-risk (of an air-puff) (LGNAP) option. We assessed when arousal increased by considering different stages of the decision-making process (baseline, viewing, anticipation, reward periods) and investigated whether autonomic responses influenced choice outcome both immediately and in the subsequent trial. Chickens were faster to choose and their heart-rate significantly increased between the viewing and anticipation (post-decision, pre-outcome) periods when selecting the HGRAP option. This suggests that they responded physiologically to the impending risk. Additionally, arousal was greater following a HGRAP choice that resulted in an air-puff, but this did not deter chickens from subsequently choosing HGRAP. In contrast to human studies, we did not find evidence that somatic markers were activated during the viewing period, suggesting that arousal is not a good measure of avoidance in non-human animals

    Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)

    Get PDF
    Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species

    Use of a Semi-field System to Evaluate the Efficacy of Topical Repellents under user Conditions Provides a Disease Exposure free Technique Comparable with Field Data.

    Get PDF
    Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m x 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing

    Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte

    Get PDF
    The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.peer-reviewe

    Evaluation of a Bayesian inference network for ligand-based virtual screening

    Get PDF
    Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening

    Practicing convict criminology: lessons learned from British academic activism

    Get PDF
    Joanne Belknap’s recent ASC presidential address included a critique of Convict Criminology’s activism. A number of concerns were provided, although of particular importance here are, first, Belknap’s concerns regarding the absence of ‘marginalized voices’ in the Convict Criminology network. Second, the issue of defining how non-con academics function as Convict Criminology group members. This paper responds to these criticisms. Specifically, we discuss the question of ‘representation’ in BCC and our attempts to remedy this issue. We also draw attention to the academic activism that British Convict Criminology is conducting in Europe. This includes a detailed discussion of the collaborative research-activist activities that involve non-con as well as ex-con academic network members. We demonstrate how these collaborations explain the vital group membership role that non-con academics assume in the activism of Convict Criminology
    • …
    corecore