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Abstract

Background: Bayesian inference networks enable the computation of the probability that an

event will occur. They have been used previously to rank textual documents in order of decreasing

relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference

network to be used for chemical similarity searching, where a database is ranked in order of

decreasing probability of bioactivity.

Results: Bayesian inference networks were implemented using two different types of network and

four different types of belief function. Experiments with the MDDR and WOMBAT databases show

that a Bayesian inference network can be used to provide effective ligand-based screening,

especially when the active molecules being sought have a high degree of structural homogeneity; in

such cases, the network substantially out-performs a conventional, Tanimoto-based similarity

searching system. However, the effectiveness of the network is much less when structurally

heterogeneous sets of actives are being sought.

Conclusion: A Bayesian inference network provides an interesting alternative to existing tools for

ligand-based virtual screening.

Background
Virtual screening is the name given to a range of computa-
tional techniques for searching a chemical database to
assess the probability that each molecule will exhibit
activity against a specified biological target [1]. These tech-
niques can be used to enhance the effectiveness of lead-
discovery programmes since they ensure that only those
molecules with reasonable a priori probabilities of activity
are considered for conventional biological screening.

The virtual screening approaches that can be used in any
particular circumstances depend principally upon the
amounts and types of data that are available [2-7]; here we

focus on ligand-based approaches, of which there are
three main classes. If just a single active molecule is avail-
able, such as a competitor's compound or a natural prod-
uct, then similarity searching can be used, in which a
database is ranked in decreasing order of similarity to the
known active structure. If several structurally related
actives have been identified then pharmacophore map-
ping can be carried out to ascertain common patterns of
features; these patterns are then searched using a 2D or 3D
substructure search procedure. If it is not possible to iden-
tify a common pharmacophore, as often occurs with het-
erogeneous sets of actives, and if significant numbers of
both active and inactive molecules are available, then
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these can be used as training data for a machine learning
system.

The simplest, and probably the most widely used, tech-
nique for virtual screening is similarity searching. Here,
the database structures are ranked in decreasing order of
similarity with the active, user-defined reference structure,
with the expectation that the nearest neighbours will
exhibit the same activity as the reference structure. There
is a huge literature associated with the measurement of
molecular similarity [8-16]. The most common approach,
which we study in this paper, uses molecules characterised
by 2D fingerprints, with the similarity between a reference
structure and a database structure calculated using an
association coefficient such as the Tanimoto coefficient
[1,8]. There are, however, other ways in which the struc-
tural information encoded in a fingerprint can be used,
and in this paper we report a detailed analysis of one way
in which this can be done. Specifically, we report the use
of a Bayesian inference network for ligand-based virtual
screening and compare its screening performance with a
conventional, Tanimoto-based searching system.

Results
The algorithm

A Bayesian inference network (hereafter BIN) is a tool that
permits the computation of the probability that an event
will occur, allowing for the fact that this chosen event can
be dependent on other events occurring. Our interest has
been spurred by work in information retrieval, where
BINs have been used to rank textual documents in
decreasing probability of relevance to a user-defined
query statement. In particular, Croft and his collaborators
have used a BIN as the basis for the InQuery retrieval sys-
tem [17-20] and for subsequent work on the use of lan-
guage models in information retrieval [21,22]. To provide
the necessary background, we first describe the operation
of a BIN when it is used for textual information retrieval,
and then show, in the next section, how simple modifica-
tions enable it to be used for similarity-based virtual
screening.

The BIN in InQuery is a directed-acyclic dependency
graph (DAG) in which the nodes represent propositional
variables or events, which can be true or false, and in
which the edges represent relationships between the prop-
ositions, i.e., an edge is drawn between two nodes if there
is a conditional relationship between them. For example
if the node p causes q, a conditional dependence between
them exists, denoted by P(q|p). Associated with each rela-
tionship in the DAG is the degree of belief, which meas-
ures the magnitude of the influence of a parent node on a
child node. The degrees of belief are stored in a storage-
efficient manner in a data structure called a canonical link
matrix [17]. An example of a simple BIN is shown in Fig-

ure 1, which consists of two parts. The document network
represents the database that is to be searched, and hence
needs to be generated just once when the database is cre-
ated. The query network represents the query that is to be
searched against the database, and can be regarded as an
inverted DAG connected to the document network. Based
on the connectivity and the interactions between the
nodes, the network can then be evaluated by calculating
the probabilities throughout the network starting with the
root nodes.

The root nodes in Figure 1, denoted by dl, represent the
event that a document is observed. Associated with each
such event is a probability, or belief. The representation
nodes (rk) represent the event that a particular indexing
term (e.g., a keyword, a phrase or a thesaural term) is
observed. The associated probability is called a belief
function, bel(rk), and much of the BIN research in infor-
mation retrieval has focused on belief functions that take
account of the weighting of index terms. The weights that
have been developed are based principally on two ideas:
term weighting, where the importance of a term is propor-
tional to the frequency with which a term occurs in an
individual document or query; and inverse document fre-
quency weighting, where the importance of a term is
inversely proportional to its frequency of occurrence
within the database as a whole [23-25].

The first layer in the query network contains the query
nodes, each of which describes an operator that expresses
constraints between the words in the retrieved docu-
ments. Examples of such operators used in the InQuery
system of Croft et al. [17-19] include: Boolean AND, OR
and NOT; weighted AND; maximum, sum and weighted
sum of the beliefs. The root of the query network, I, repre-
sents the information need: this node combines all the
information from its parent nodes into a single value. To
evaluate the Bayesian network, the state of each document
in turn is set to true (and the state of all the other docu-
ment nodes set to false) and the belief then propagated
through the network by calculating the posterior proba-
bilities for each node. The posterior probability of the
information need node then represents the conditional
probability of that document being relevant to the given
query. The procedure is repeated for each of the docu-
ments and the database then ranked in order of decreasing
probability of relevance to the query.

The implementation

We have noted previously the close relationship that exists
between many of the methods that are used for textual
information retrieval and for the processing of chemoin-
formatics databases [16,26], and it is this relationship that
occasioned our initial interest in the application of BINs
to virtual screening. Specifically, we suggest here that the
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BIN model outlined above can be applied to similarity-
based virtual screening by replacing the index terms, doc-
uments, query and conditional probability of relevance in
Figure 1 by substructural fragments, database structures,
reference structure and conditional probability of activity,
respectively. In this way, we can compute the conditional
probability of activity for each database structure, and
hence rank the database in decreasing order of these prob-
abilities. While there are close analogies between the two
application domains, it is worth noting at this point one
considerable difference. In information retrieval, the doc-
uments in a large text database can contain many hun-
dreds of thousands, or millions, of distinct terms (even if
attention is restricted to individual words) whereas the
query statement will contain only a very small number of
these (often just two or three words in Web searches); in
similarity searching, both the reference structure and the
database structures are represented in the same way by a
fingerprint containing a few hundred or a few thousand
elements (1024 in the fingerprints studied here) and there
is thus a greater degree of overlap in the database and
query representations.

As noted in the previous section, the belief function,
bel(rk), plays an important part in any BIN, and we have
used four different belief functions here. These have all
been used previously in information retrieval to model

information about the occurrences of textual keywords,
but have been modified here to model information about
the occurrences of substructural fragments. The belief
function that was originally used in InQuery is:

Here, db is the default belief, tfrk, dj is the frequency of
occurrence of the fragment rk in molecule dj, max tfdj is the
maximum frequency of occurrence in molecule dj, dfrk is
the number of molecules containing rk and N is the total
number of molecules. An alternative, but closely related,
belief function that has been extensively used in the TREC
series of text retrieval experiments [27] is one developed
on the OKAPI project:

bel r

db db
tfrk d j

tfd j

k( )

( )
log( , . )

log(max . )

=

+ − ×
+

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
0 5

1 0
××

+⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

log
.

log( . )

N

dfrk

N

0 5

1 0
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Use of a Bayesian inference network for information retrieval. In the chemoinformatics context, the Document net-
work describes the structures of the database molecules, and the Query network describes the reference structure that is to 
be searched against this database.
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Here, |dj| is the size (in terms of number of fragments) of
the molecule dj and |Davg| is the average size of all the mol-
ecules in the database. Finally, Metzler and Croft have
used belief functions, called smoothing functions, from
studies of language modeling, which is a formal probabi-
listic framework for studies in speech recognition and sta-
tistical machine translation [21]. The Jelinek-Mercer
smoothing function was found to be the most effective for
information retrieval and is:

Here λ is a constant and cfrk is the sum of the frequencies
of occurrence for the fragment rk in the database:

Details of these belief functions are provided in the cited
literature, and we have used all three of them in our exper-
iments: they will be referred to as STD (for standard), OKA
(for OKAPI) and SMO (for smoothing function). We have
also used one – called SMOL – in which the natural loga-
rithm of the smoothing function was used, as this gives a
more even spread of probability scores [28].

We have used two of the bel(q) belief functions from
InQuery, specifically the SUM and WSUM operators. If p1,
p2,..., pn represent the beliefs at the parent nodes of q with
corresponding weights w1, w2...., wn then the belief at q is
given by

In the SUM model, the database structure nodes are
denoted by d1, d2,..., dl where l is the number of molecules
in the database. The second layer of nodes corresponds to
the fragments that are set in the fingerprint for the refer-
ence structure, and which are hence expected to be present
in active molecules (by the similar property principle).
The fragments are denoted in the figure by r1, r2,..., rk,

where k is the number of non-zero features set in the ref-
erence structure's fingerprint. In order to get a probability
score for one molecule a SUM-operator is used, which
combines the partial beliefs of the posterior probabilities
into a single score for each database structure. The SUM
operator takes account only of the presence or absence of
each fragment in the reference structure's fingerprint; the
WSUM operator additionally uses the number of occur-
rences of each such fragment as a weight in the calculation
of the probability for each database structure.

Testing

The searches of the MDDR and WOMBAT databases (see
EXPERIMENTAL) are presented in tables in Additional
files 1 and 2, and 3 and 4, respectively. In each table we
list the recall in terms of the mean and standard deviation
for the percentage of the actives retrieved (when averaged
over 20 searches for each activity class). Recall figures are
presented for each of the four different belief functions in
the two different networks, and the tables also contain the
corresponding figures for Tanimoto (TAN) searches
(which have been included in each right-most column for
purposes of comparison). The bottom row of each table
contains the mean values averaged over the complete set
of activity classes. The results presented here are for the
recall of the actives in the top-1% of the ranking, with the
best-performing search method (i.e., that with the highest
mean recall) bold-faced and italicized. Comparable sets of
experiments were carried out using the top-5% of the
rankings to evaluate the various searches; the relative per-
formance of the various methods was unchanged and we
have hence included the results only for the top-1%. Sim-
ilar comments apply to experiments in which we evalu-
ated the various methods in terms of the recall of active
Murcko scaffolds [29], rather than of active molecules.

We consider first the sets of BIN results in Additional files
1 and 2 to determine the relative performance of the eight
methods. The significance, if any, of the differences in per-
formance was tested with Kendall's W test of statistical sig-
nificance, which is used to evaluate the consistency of k
different sets of ranked judgments of the same set of N dif-
ferent objects [30]. Here, we have considered each of the
eleven activity classes as a judge ranking the eight different
combinations of network and belief function in order of
decreasing effectiveness (as measured by the mean recall),
i.e., k = 11 and N = 8. Converting the values in Tables S1
and S2 (Additional files 1 and 2) to ranks, the computed
value for W is 0.520. The significance of this value can be
tested using the χ2 distribution since, for N > 7,

with N-1 degrees of freedom. This yields a value for χ2 that
is highly significant (p < 0.0001). Given that a significant
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level of agreement has been achieved, Siegel and Castellan
suggest that the best overall ranking of the N objects can
be obtained using their mean ranks averaged over the k
judges [30]. This yields the following ranking for the
MDDR database:

WSUM-OKA > SUM-OKA > WSUM-SMOL > SUM-SMOL
> WSUM-STD > WSUM-SMO > SUM-SMO > SUM-STD

An entirely comparable analysis for the eight sets of BIN
results in Tables S3 and S4 (Additional files 3 and 4)
yields a value for W of 0.527; this is again highly signifi-
cant and yields the following ranking for the WOMBAT
database:

SUM-OKA > SUM-SMOL > WSUM-SMOL > WSUM-SMO
> SUM-STD > SUM-SMO > WSUM-OKA > WSUM-STD

Both of these rankings are in broad accord with the mean
recall values in the bottom rows of Tables S1-S4 (Addi-
tional files 1, 2, 3, 4).

SUM-OKA has performed well in both datasets, and we
have hence used this function to determine whether there
is any significant difference between the effectiveness of
BIN-based and TAN-based searching. The difference has
been assessed using the Sign test, a non-parametric test
that is applicable to sets of paired observations such as
these [30]. Specifically, assume that we have N pairs of
observations – in this case the mean recall figures for each
of the activity classes for SUM-OKA and for TAN – where
there is a difference in the observed values; assume further
that the first method performs better on x occasions (and
hence that the second performs better on N-x occasions).
The Sign test uses the binomial formula to check whether
min{x, N-x} would have been expected to have occurred
by chance if the two possible outcomes were equally
likely; if this is not the case then we can assume that the
two methods are significantly different (two-tailed test) or
that one method is significantly better than the other
(one-tailed test). For the MDDR data, SUM-OKA outper-
forms TAN 9 times out of 11, for which the one-tailed sig-
nificance value is 0.033, i.e., a significant difference (p <
0.05); for the WOMBAT data, SUM-OKA outperforms
TAN 13 times out of 14, for which the one-tailed signifi-
cance value is 0.001, i.e., again a highly significant differ-
ence.

We can obtain further insights into the relative perform-
ance of the BIN and TAN searches if we consider the
degree of structural diversity in the activity classes. The
classes in Tables S1-S4 (Additional files 1, 2, 3, 4) have
been listed in order of decreasing structural diversity (see
EXPERIMENTAL), and it will be seen that TAN is the best
method over all the nine methods for the two most heter-

ogeneous classes in Tables S1 and S2 (Additional files 1
and 2) (the protein kinase C and cyclooxygenase inhibi-
tors). TAN is also the best method overall for the most het-
erogeneous class in Tables S3 and S4 (Additional files 3
and 4) (again the cyclooxygenase inhibitors). This sug-
gests that the relative performance of the two approaches
– BIN as represented by SUM-OKA and TAN – depends on
the nature of the active molecules that are being sought.

We have investigated this suggestion by carrying out
screening experiments using the ten homogeneous classes
in MDDR-HOM and the ten heterogeneous classes in
MDDR-HET (see EXPERIMENTAL). The results of these
searches are presented in the tables in Additional files 5
and 6, and 7 and 8, respectively. Inspection of these tables
shows that SUM-OKA (and also SUM-SMOL) performs
very well for the homogeneous activity classes and very
poorly for the heterogeneous classes, and vice versa for
TAN. The results in these tables hence provide strong evi-
dence for the belief that Bayesian inference networks are
noticeably less effective when there is a high level of struc-
tural diversity in the actives that are to be retrieved. Thus,
if we consider MDDR-HOM, SUM-OKA outperforms TAN
for nine of the ten activity classes, for which the one-tailed
Sign test significance value is 0.011; whereas for MDDR-
HET, the situation is completely reversed, with TAN out-
performing SUM-OKA for nine of the ten activity classes.

Discussion
We draw two principal conclusions from the experimental
results presented in Tables S1-S8 (Additional files 1, 2, 3,
4, 5, 6, 7, 8). First, that BIN, specifically using the SUM-
OKA belief function, is significantly superior to TAN when
averaged over a range of different activity classes. Second,
that TAN is significantly superior to BIN when attention is
focused on structurally diverse activity classes.

It is not clear why there is such a marked difference in
behaviour between BIN and TAN when different types of
dataset are screened. In previous work, we have estab-
lished the importance of molecular size in similarity
searching using different types of similarity coefficient
[31], and this may play a role here. Specifically, the mean
molecular weights for the MDDR-HOM and MDDR-HET
activity classes were 541.2 and 332.7, and this difference
is reflected in the following related parameters: mean
number of H-bond acceptors (8.9 and 4.0), mean number
of H-bond donors (4.3 and 1.4), and mean number of
bits set in the fingerprint (88.7 and 55.9). In this context,
it is interesting to note that (when used for text retrieval
purposes) the OKA belief function contains a length-nor-
malisation term to minimize the bias of the STD belief
function towards the retrieval of longer documents (i.e.,
larger molecules in the present context) [18]; it may be
that an alternative normalization would be appropriate
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here. Whatever the reason, the relatively poor perform-
ance of SUM-OKA (and the other types of BIN search) on
the diverse sets of actives is an undesirable characteristic of
the BIN approach, since this would appear to lessen its
attractiveness for scaffold hopping, one of the most
important functions of an effective system for virtual
screening.

To probe further the differences in the BIN and TAN
searches, we compared the sets of actives retrieved in the
two types of search. This comparison (again using SUM-
OKA to represent BIN) is shown in Tables 1 and 2, which
summarise the mean degree of overlap in the search out-
puts, when averaged over the twenty searches for each of
the activity classes. The figures listed in Table 1 are the per-
centage (mean and standard deviation) of the active mol-
ecules retrieved by both SUM-OKA and TAN or by only
one of these two search methods. It will be seen that SUM-
OKA retrieves more unique actives than does TAN for the
MDDR, MDDR-HOM and WOMBAT datasets, with the
converse applying for the MDDR-HET dataset. To put
these figures in context, Table 2 presents the same data in
terms of the actual numbers of retrieved actives (rather
than percentages). Thus, for a typical WOMBAT search,
SUMO-OKA and TAN searches would result in 122.80
actives that were common to both top-1% lists, 56.37
actives that were unique to the SUM-OKA list and 26.84
actives that were unique to the TAN list. There did not
appear to be any marked differences in the sizes of the
active molecules retrieved by the two approaches.

A search of SciFinder Scholar in January 2009 revealed
107 references to Bayesian inference networks, mostly
relating to gene expression and regulation and to analyti-
cal chemistry. and without any relating to applications in
chemoinformatics. While this paper was being prepared
for submission, we became aware of the work of Abdo
and Salim [32], who have very recently described experi-
ments with MDDR data that are similar to some of those
reported here. Specifically, they carried out searches for a
set of twelve activity classes, nine of which overlap with
those in Tables S1 and S2 (Additional files 1 and 2), using

a BIN that was based on the WSUM-OKA combination
and EHFC_4, EEFC_4, ECFC_4, FHFC_4, FEFC_4 and
FCFC_4 fingerprints. The principal difference between
their experiments and ours is the composition of the data-
base that was used for their experiments. We used the set
of 102 K MDDR structures and eleven associated activity
classes that have been used in several previous virtual
screening studies (as well as the MDDR-HOM, MDDR-
HET and WOMBAT datasets); however Abdo and Salim
use a small subset of the MDDR database, containing just
40 K structures. They concluded that BIN out-performed
TAN-based searching whilst noting, like us, that the BIN
performance was affected by the diversity of the active
molecules that were being sought. Their conclusion as to
the overall superiority of BIN is based on their Table S5
(Additional file 5), which compares the recall for the best
BIN searches (based on the EHFC_4 fingerprint) with the
TAN recall; the former does better for eight of the twelve
activity classes and latter does better for the other four;
however, a one-tailed Sign test on this data shows that the
differences in performance for these data are not statisti-
cally significant (p = 0.194). Our experiments, conversely,
have demonstrated the significant superiority of the BIN
approach when a range of types of activity class is studied.

Conclusion
In this paper, we have evaluated the use of Bayesian infer-
ence networks for the implementation of similarity-based
virtual screening. Our experiments with the MDDR and
WOMBAT databases show that the networks provide an
effective tool for ligand-based virtual screening. Specifi-
cally, our experiments have demonstrated the significant
superiority of the best of the methods – referred to here as
SUM-OKA -for screening a range of types of activity class
when compared to a conventional screening system based
on the Tanimoto coefficient. However, Tanimoto-based
screening is significantly more effective if attention is
focused on the more challenging task of identifying struc-
turally diverse sets of active molecules; this might limit the
effectiveness of the BIN approach for scaffold-hopping
applications.

Table 1: Overlap of actives (mean and standard deviation) in the 

top-1% search outputs from SUM-OKA and TAN searches: 

percentage of active molecules retrieved by both SUM-OKA and 

TAN ("Overlap") or only by one of these two search methods.

Percentage of actives

Dataset Overlap SUM-OKA TAN

MDDR 14.81 12.67 6.58 4.28 4.40 2.23

MDDR-HOM 69.21 18.48 13.39 8.84 3.58 3.75

MDDR-HET 7.05 6.36 2.38 1.86 4.71 3.75

WOMBAT 22.37 16.01 8.43 5.38 3.84 2.01

Table 2: Overlap of actives (mean and standard deviation) in the 

top-1% search outputs from SUM-OKA and TAN searches: 

number of active molecules retrieved by both SUM-OKA and 

TAN ("Overlap") or only by one of these two search methods.

Number of actives

Dataset Overlap SUM-OKA TAN

MDDR 131.58 154.10 56.41 47.71 35.89 27.40

MDDR-HOM 234.54 262.74 63.53 91.37 21.39 42.69

MDDR-HET 44.17 35.17 14.89 8.52 32.56 29.79

WOMBAT 122.80 71.39 56.37 44.62 26.84 21.05
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The search results presented here, in particular those in
Tables 1 and 2, provide some evidence for the belief that
it would be beneficial to combine the search outputs from
BIN-based and TAN-based screening. Future work will
hence consider the use of data fusion methods to combine
these two approaches [33]. It is also our intention to use
data fusion to combine the results of BIN searches using
multiple reference structures since it is easy to extend a
network to incorporate different sources of evidence (such
as that from different reference structures). We also hope
to study further the effect of structural diversity on the rel-
ative effectiveness of BIN and TAN searching.

Experimental

Our experiments have used two of the most popular
chemoinformatics databases: the MDL Drug Data Report
database (MDDR, available from Symyx Technologies at
http://www.symyx.com/products/databases/bioactivity/
mddr/index.jsp) and the World of Molecular Bioactivity
database (WOMBAT, available from Sunset Molecular
Discovery LLC at http://www.sunsetmolecular.com/). The
version of MDDR used here was that originally described
by Hert et al. and used subsequently, by both us and oth-
ers, for the validation of virtual screening methods [34-
36]. It contains 102,516 molecules, with searches being
carried out not only for the original eleven activity classes
described by Hert et al. but also for two additional sets of
activity classes: one chosen to be as structurally homoge-
neous as possible (MDDR-HOM) and one chosen to be as
structurally heterogeneous as possible (MDDR-HET) [37].
The three sets of MDDR classes are listed in Tables 3, 4 and
5. Each row of the table contains an activity class, the
number of molecules belonging to the class, and the
class's diversity, this being based on the pair-wise Tanim-
oto similarities calculated using the standard Unity 2D
fingerprint (available from Tripos Inc. at http://www.tri
pos.com). The version of WOMBAT used here contained
138,127 molecules with searches being carried out for the

14 activity classes listed in Table 6. The identification of
these classes is described in detail by Gardiner et al. [38].

The molecules in the two databases were characterised by
ECFC_6 fingerprints. These encode circular substructures
of radius three bonds centred on each of the non-hydro-
gen atoms in a molecule, and with each element in the fin-
gerprint containing the number of times that a particular
substructure occurred in a molecule. The 1024-element
fingerprints were generated using the Pipeline Pilot soft-
ware. Experiments were also carried out on the MDDR
dataset using the ECFC_4, SCFC_4 and EHFC_4 finger-
prints: performance was analogous to that obtained for
ECFC_6, and the results have hence not been included
here.

The belief functions that lie at the heart of a BIN all have
parameters that have to be set. For the belief functions
used here, these are db for the STD and OKA functions and
λ for the SMO and SMOL functions (see above). The val-
ues used for the results reported in Tables S1-S8 (Addi-
tional files 1, 2, 3, 4, 5, 6, 7, 8) were db = 0.5 for STD, db =
0.2 for OKA, and λ = 0.6 for both SMO and SMOL. These
values were chosen after initial, parameterisation runs,
which showed that BIN performance was slightly affected
by the precise choice of parameter value (runs with both
parameters in the range 0.1–1.0 in steps of 0.1).

Many different criteria have been suggested for the evalu-
ation of virtual-screening experiments [39-41]. The exper-
iments reported here used the simplest such criterion: the
recall, i.e., the percentage of the active molecules retrieved
at some cut-off point in the ranking, for which we have
used both the top-1% and the top-5% of the rankings. The
top-5% results have not been included in the paper since
they were analogous, in terms of the relative performance
of the various methods, to those reported for the top-1%.
Twenty randomly-selected molecules from each activity
class were used in turn as the reference structure, and the

Table 3: MDDR activity classes used in the virtual screening experiments.

Activity class Active molecules Pairwise similarity

Renin inhibitors 1130 0.573 0.11

HIV protease inhibitors 750 0.446 0.12

Thrombin inhibitors 803 0.419 0.13

Angiotensin II AT1 antagonists 943 0.403 0.10

Substance P antagonists 1246 0.399 0.11

5HT3 antagonists 752 0.351 0.12

5HT reuptake inhibitors 359 0.345 0.12

D2 antagonists 395 0.345 0.10

5HT1A agonists 827 0.343 0.10

Protein kinase C inhibitors 453 0.323 0.14

Cyclooxygenase inhibitors 636 0.268 0.09

The three columns in each table give the number of actives in the class and the mean and the standard deviation of the inter-molecular similarities 
for all the molecules in the chosen class.

http://www.symyx.com/products/databases/bioactivity/mddr/index.jsp
http://www.symyx.com/products/databases/bioactivity/mddr/index.jsp
http://www.sunsetmolecular.com/
http://www.tripos.com
http://www.tripos.com
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Table 4: MDDR-HOM activity classes used in the virtual screening experiments.

Activity class Active molecules Pairwise similarity

Muscarinic (M1) agonists 848 0.206 0.098

NMDA receptor antagonists 1311 0.199 0.090

Nitric oxide synthase inhibitors 377 0.189 0.086

Dopamine beta-hydroxylase inhibitors 95 0.229 0.076

Aldose reductase inhibitors 882 0.232 0.096

Reverse transcriptase inhibitors 519 0.218 0.095

Aromatase inhibitors 513 0.229 0.117

Cyclooxygenase inhibitors 636 0.220 0.107

Phospholipase A2 inhibitors 704 0.224 0.111

Lipoxygenase inhibitors 2555 0.224 0.110

Details as for Table 3.

Table 5: MDDR-HET activity classes used in the virtual screening experiments.

Activity class Active molecules Pairwise similarity

Adenosine (A1) agonists 88 0.524 0.124

Adenosine (A2) agonists 71 0.536 0.137

Renin inhibitors 1130 0.459 0.119

CCK agonists 79 0.452 0.099

Monocyclic beta-lactams 76 0.549 0.084

Cephalosporins 1312 0.501 0.098

Carbacephems 73 0.487 0.099

Carbapenems 896 0.457 0.124

Tribactams 74 0.548 0.150

Vitamin D analogues 279 0.574 0.105

Details as for Table 3.

Table 6: WOMBAT activity classes used in the virtual screening experiments.

Activity class Active molecules Pairwise similarity

Renin inhibitors 474 0.592 0.109

Protein kinase C inhibitors 142 0.565 0.277

Matrix metalloprotease inhibitors 694 0.444 0.148

Angiotensin II AT1 antagonists 724 0.443 0.131

HIV protease inhibitors 1128 0.442 0.146

Substance P antagonists 558 0.427 0.127

Thrombin inhibitors 421 0.418 0.144

5HT1A antagonists 592 0.399 0.134

Factor Xa inhibitors 842 0.394 0.124

5HT3 antagonists 220 0.377 0.175

Acetylcholine esterase inhibitors 503 0.373 0.155

D2 antagonists 910 0.367 0.116

Phosphodiesterase inhibitors 596 0.359 0.136

Cyclooxygenase inhibitors 965 0.324 0.139

Details as for Table 3.
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search performance averaged over all of the reference
structures for the class to obtain the mean and standard
deviation; the final measure of search effectiveness was
then obtained by averaging over the activity classes, so
that each class contributed equally to the overall perform-
ance.

To provide a basis of comparison for the BIN searches,
analogous experiments were carried out using a conven-
tional similarity searching system (TAN) based on the full
version of the Tanimoto coefficient [8]. For two molecular
fingerprints X and Y, the similarity between the corre-
sponding molecules is

where the summations are over all of the elements in each
fingerprint, and where each element contains the fre-
quency of occurrence of a substructural fragment. The use
of frequencies of occurrence has been shown previously to
enhance search effectiveness when compared to conven-
tional similarity measures based on binary fingerprints
[42-44].
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