3,834 research outputs found
Recommended from our members
Electronic state spectroscopy of C<sub>2</sub>Cl<sub>4</sub>
The VUV spectrum of C2Cl4 is reported in the energy range 3.8-10.8 eV (325-115 nm). Several photoabsorption features are observed for the first time, including a very weak low-lying band which is provisionally attributed to a π → π* triplet transition. Recent ab initio calculations of the molecule’s electronic transitions [Arulmozhiraja et al. J. Chem. Phys. 129 (2008) 174506] provide the basis for the present assignments below 8.5 eV. An extended ndπ series is proposed to account for several higher-energy Rydberg bands. The identification of vibrational structure, dominated by symmetric C=C and CCl2 stretching in excitations from the HOMO, largely agrees with previous spectroscopic studies. The present absolute photoabsorption cross sections cover a wider energy range than the previous measurements and are used to calculate UV photolysis lifetimes of this aeronomic molecule at altitudes between 20 and 50 km
AdS/SCFT in Superspace
A discussion of the AdS/CFT correspondence in IIB is given in a superspace
context. The main emphasis is on the properties of SCFT correlators on the
boundary which are studied using harmonic superspace techniques. These
techniques provide the easiest way of implementing the superconformal Ward
identities. The Ward identities, together with analyticity, can be used to give
a compelling argument in support of the non-renormalisation theorems for two-
and three-point functions, and to establish the triviality of extremal and
next-to-extremal correlation functions. The OPE in is also briefly discussed.Comment: 10 pages; talk given by PSH at 2nd Gursey Memorial Conference, June
200
Universal properties of superconformal OPEs for 1/2 BPS operators in
We give a general analysis of OPEs of 1/2 BPS superfield operators for the
superconformal algebras OSp(8/4,R), PSU(2,2), F and
OSp() which underlie maximal AdS supergravity in . \\
The corresponding three-point functions can be formally factorized in a way
similar to the decomposition of a generic superconformal UIR into a product of
supersingletons. This allows for a simple derivation of branching rules for
primary superfields. The operators of protected conformal dimension which may
appear in the OPE are classified and are shown to be either 1/2 or 1/4 BPS, or
semishort. As an application, we discuss the "non-renormalization" of extremal
-point correlators.Comment: To be published in NJP Focus Issue: Supersymmetry in condensed matter
and high energy physic
Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods
We report on a combined experimental and theoretical study of electron transfer induced decomposition of adenine and a selection of analogue molecules in collisions with potassium atoms (K). Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6–68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine, adenine, 9-methyl adenine, 6-dimethyl adenine and 2-D adenine. Following our recent communication about selective hydrogen loss from the transient negative ions (TNI) produced in these collisions [T. Dunha et al. J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment the lowest unoccupied molecular orbitals accessed in the collision process
A Cellular Automaton Model for Diffusive and Dissipative Systems
We study a cellular automaton model, which allows diffusion of energy (or
equivalently any other physical quantities such as mass of a particular
compound) at every lattice site after each timestep. Unit amount of energy is
randomly added onto a site. Whenever the local energy content of a site reaches
a fixed threshold , energy will be dissipated. Dissipation of energy
propagates to the neighboring sites provided that the energy contents of those
sites are greater than or equal to another fixed threshold . Under such dynamics, the system evolves into three different types of
states depending on the values of and as reflected in their
dissipation size distributions, namely: localized peaks, power laws, or
exponential laws. This model is able to describe the behaviors of various
physical systems including the statistics of burst sizes and burst rates in
type-I X-ray bursters. Comparisons between our model and the famous forest-fire
model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised.
Accepted by Phys.Rev.
Negotiation in strategy making teams : group support systems and the process of cognitive change
This paper reports on the use of a Group Support System (GSS) to explore at a micro level some of the processes manifested when a group is negotiating strategy-processes of social and psychological negotiation. It is based on data from a series of interventions with senior management teams of three operating companies comprising a multi-national organization, and with a joint meeting subsequently involving all of the previous participants. The meetings were concerned with negotiating a new strategy for the global organization. The research involved the analysis of detailed time series data logs that exist as a result of using a GSS that is a reflection of cognitive theory
From correlation functions to scattering amplitudes
We study the correlators of half-BPS protected operators in N=4
super-Yang-Mills theory, in the limit where the positions of the adjacent
operators become light-like separated. We compute the loop corrections by means
of Lagrangian insertions. The divergences resulting from the light-cone limit
are regularized by changing the dimension of the integration measure over the
insertion points. Switching from coordinates to dual momenta, we show that the
logarithm of the correlator is identical with twice the logarithm of the
matching MHV gluon scattering amplitude. We present a number of examples of
this new relation, at one and two loops.Comment: typos corrected, references adde
Gauge-invariant correlation functions in light-cone superspace
We initiate a study of correlation functions of gauge-invariant operators in
N=4 super Yang-Mills theory using the light-cone superspace formalism. Our
primary aim is to develop efficient methods to compute perturbative corrections
to correlation functions. This analysis also allows us to examine potential
subtleties which may arise when calculating off-shell quantities in light-cone
gauge. We comment on the intriguing possibility that the manifest N=4
supersymmetry in this approach may allow for a compact description of entire
multiplets and their correlation functions.Comment: 35 pages, several figure
Threshold behavior in metastable dissociation of multi-photon ionized thymine and uracil
Microsecond-timescale HNCO loss has been observed from single-color multi-photon ionized pyrimidine nucleobases in the gas phase. Photon energy thresholds for the metastable channels have been measured at 5.55 ± 0.02 eV for thymine and 5.57 ± 0.02 eV for uracil. We argue that these results can be attributed to accessing the molecules’ S1 states with additional vibrational energy matching the threshold energy for HNCO loss from the radical cation. Combined with previous photoionization energies, this enables the S1 adiabatic energies to be deduced: 3.67 ± 0.07 eV for thymine and 3.77 ± 0.07 eV for uracil. These values are consistent with recent calculations
Flares and variability from Sagittarius A*: five nights of simultaneous multi-wavelength observations
Aims. We report on simultaneous observations and modeling of mid-infrared
(MIR), near-infrared (NIR), and submillimeter (submm) emission of the source
Sgr A* associated with the supermassive black hole at the center of our Galaxy.
Our goal was to monitor the activity of Sgr A* at different wavelengths in
order to constrain the emitting processes and gain insight into the nature of
the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in
the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the
sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007.
Results. The observations reveal remarkable variability in the NIR and sub-mm
during the five nights of observation. No source was detected in the MIR, but
we derived the lowest upper limit for a flare at 8.59 microns (22.4 mJy with
A_8.59mu = 1.6+/- 0.5). This observational constraint makes us discard the
observed NIR emission as coming from a thermal component emitting at sub-mm
frequencies. Moreover, comparison of the sub-mm and NIR variability shows that
the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of
our five-night campaign involving three flares. We explain this behavior by a
loss of electrons to the system and/or by a decrease in the magnetic field, as
might conceivably occur in scenarios involving fast outflows and/or magnetic
reconnection.Comment: 10 pages, 7 figures, published in A&
- …