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Vieira, P. (2018). Electron transfer driven decomposition of adenine and selected analogs as probed by experimental
and theoretical methods. The Journal of Chemical Physics, 148(13), article no. 134301.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1063/1.5021888

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1063/1.5021888
http://oro.open.ac.uk/policies.html


1 
 

Electron transfer driven decomposition of adenine and selected analogues 

as probed by experimental and theoretical methods 
 

T. Cunha,1 M. Mendes,1 F. Ferreira da Silva,1 S. Eden,2 G. García,3 

M.-C. Bacchus-Montabonel4,a) and P. Limão-Vieira1,a) 

 
1 Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA 

de Lisboa, 2829-516 Caparica, Portugal 
2 School of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, UK 
3 Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-

bis, 28006 Madrid, Spain 
4 Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, 

France 

 

ABSTRACT 

We report on a combined experimental and theoretical study of electron transfer induced 

decomposition of adenine and a selection of analogue molecules in collisions with potassium 

atoms (K). Time-of-flight negative ion mass spectra have been obtained in a wide collision 

energy range (6–68 eV in the centre-of-mass frame), providing a comprehensive investigation 

of the fragmentation patterns of purine, adenine, 9-methyl adenine, 6-dimethyl adenine and 2-

D adenine. Following our recent communication about selective hydrogen loss from the 

transient negative ions (TNI) produced in these collisions [J. Chem. Phys. 148, 021101 (2018)], 

this work focuses on the production of smaller fragment anions. In the low-energy part of the 

present range, several dissociation channels that are accessible in free electron attachment 

experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-

methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation 

in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. 

In this case, the excess energy can be redistributed through the available degrees of freedom 

inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-

methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a 

strong basis for the assignment the lowest unoccupied molecular orbitals accessed in the 

collision process. 
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I. INTRODUCTION 

It is now well-established within the international scientific community that low-energy 

electrons (e.g. <15 eV), as the most abundant secondary species produced by ionising radiation, 

play an important role in the modification of critical molecular structures in biological material. 

Such electron induced molecular decomposition processes have been demonstrated to yield 

substantial damage in plasmid DNA through single- and double-strand breaks.1 Low-energy 

electrons can efficiently attach to DNA molecular constituents and derivatives to form transient 

negative ions (TNI), which can subsequently dissociate and have been probed extensively in 

recent years using both experimental and theoretical methods.2 Under aqueous conditions 

which approximate biological environments, TNI resonances can be shifted to lower energies3. 

Furthermore Wang and co-workers4 found that significant quantities of single- and double-

strand breaks of irradiated aqueous DNA are induced by pre-hydrated electrons. Wang et al.’s 

experiments on each deoxyribonucleotide (dXMP where X represents Thymine, Cytosine, 

Guanine or Adenine) have also shown that dGMP and dAMP are more efficient at capturing 

pre-hydrated electrons than dTMP and dCMP. Since most of the radiation damage in cellular 

DNA occurs through the generation of reactive species within the surrounding water, Wang et 

al.’s proposed mechanism of dissociative electron transfer may be responsible for a large 

portion of such damage. Given this rationale, electron transfer seems to be more prevalent under 

physiological conditions rather than free electron attachment processes. Therefore we consider 

that the present data on collisional electron-transfer induced dissociation of selected purine 

targets may have future applications in nanoscale models of radiation damage in DNA. By 

carrying out potassium-impact mass spectrometry experiments on partially labelled derivatives 

of adenine (Ad) and by means of quantum chemical calculations, we have explored the 

fragmentation patterns of negative ions formed in charge-transfer collisions. 

Electron interactions with adenine (C5H5N5) are well represented in the literature, including 

dissociative electron attachment (DEA) experiments,5,6 electron impact ionisation studies,7 and 

charge-exchange collisions with laser-excited Rydberg atoms to probe dipole-bound anions.8 

Aflatooni et al.’s9,10 electron transmission data placed the three lowest electron affinities of π* 

character at 0.54, 1.36 and 2.17 eV. More recently, site-selective bond excision of adenine 

yielding the dehydrogenated parent anion upon electron transfer in collision with neutral 

potassium atoms have been reported.11 The influence of functional groups on site-specific 

dissociation of DNA bases by low-energy electron impact has been demonstrated via an 

effective loss of hydrogen located at the specific nitrogen positions.12,13,14 As far as theoretical 

investigations are concerned, we note elastic-scattering cross sections and resonance energies 
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for low-energy electron impact on DNA/RNA bases15, bound anionic states of adenine 

tautomers explored at the B3LYP/6-31+G** level of theory,16 vertical and adiabatic ionisation 

energies of 12 adenine tautomers,17 geometrical structures and energetic properties for different 

tautomers of adenine using multi-configurational wave functions,18 and electronic spectra of 

purines19 and purine tautomers.20 Comprehensive studies on dissociative photoionisation of 

adenine following valence excitation21 and reactivity in adenine–water clusters in multi-photon 

and electron impact ionisation studies,22 have been also reported. Finally, hydrodynamic 

simulations have indicated that sequential HCN addition can be responsible for adenine 

formation during molecular cloud collapse.23 Quantum chemical studies have recently shed 

light on the role of HCN and other prebiotic oligomers (e.g. HCCN, NH2CN and CN) to 

participate in gas-phase (and in the grain-phase) radical-radical and radical-molecule reactions 

on adenine formation within the interstellar medium.24,25  

 

II. EXPERIMENTAL METHOD 

The crossed molecular beam setup used to study collisions of neutral potassium (K) atoms with 

neutral purines, has been described in detail previously.26,27 Briefly, an effusive target molecular 

beam crosses a primary beam of fast neutral K atoms and the product anions are analysed using 

a home-built linear time-of-flight (TOF) mass spectrometer. The K beam is produced in a 

resonant charge exchange chamber from the interaction of K+ ions from a potassium ion source 

(12–100 eV in the lab frame) with gas-phase neutral potassium atoms from an oven source. 

Residual ions were removed from the primary beam by electrostatic deflecting plates outside 

the oven. The intensity of the neutral potassium beam was monitored using a Langmuir–Taylor 

ionisation detector before and after the collection of each TOF mass spectrum and the beam 

energy resolution in the collision energy range as measured as ~0.5 eV (FWHM) using a 

hemispherical electrostatic energy loss analyser to characterise the K+ ion signal at a fixed 

energy following K collisions with nitromethane. The effusive beam of purines from an oven 

source was admitted into vacuum through a 1 mm diameter capillary where it was crossed with 

the neutral fast potassium beam. Negative ions formed in the collision region were extracted by 

a 250 V cm−1 pulsed electrostatic field. The typical base pressure in the collision chamber was 

6×10−5 Pa and the working pressure was 4×10−4 Pa. Mass spectra (resolution m/Δm ≈ 125) were 

obtained by subtracting background measurements (without the heated sample) from the sample 

measurements. Mass calibration was carried out on the basis of the well-known anionic species 

formed after potassium collisions with nitromethane.28 Purine (Pu), adenine (Ad), 9-methyl 

adenine (9-mAd) and 6-dimethyl adenine (6-dimAd) were supplied by Sigma Aldrich with 
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stated purities of 98%, ≥ 99%, 97% and ≥ 98%, respectively. Adenine-2-d (2-DAd) was 

supplied by CDN Isotope Inc. with isotope enrichment of 97%. They were used as delivered. 

The samples were heated up to 400 K and the temperatures were controlled using a PID unit. 

In order to test for any thermal decomposition, spectra were recorded at different temperatures. 

No differences were observed in relative peak intensities as a function of temperature. The 

extraction region and the TOF system were heated during the measurements in order to prevent 

any sample condensation and thus charge accumulation on the electrodes. 

 

III. THEORETICAL METHOD 

The charge transfer in the collision of a neutral potassium atom and a nucleobase is described 

in the framework of the molecular representation looking at the evolution of the quasi-

molecular system formed by the potassium projectile and the biomolecular target along the 

reaction coordinate. The one-dimension coordinate approximation is applied, as in previous 

ion/neutral-biomolecule collision systems.29,30,31 The atom-nucleobase collision system is thus 

treated as a pseudo-diatomic molecule evolving along the coordinate associated with the  

distance between the impinging atom and the nucleobase.32,33 This approach does not consider 

the internal degrees of freedom of the biomolecule but may be used for very fast collision 

processes where nuclear vibration and rotation motions are much slower than the collision time  

and can be frozen during the collision. 

The geometry of adenine and 9-mAd has been optimized at the MP2 level of theory from the 

work of Fuentes-Cabrera et al.34 A perpendicular approach of the potassium atom, pointing at 

the N9 atom (see FIG. 1) has been considered, as the charge transfer process has been clearly 

shown to be favoured in such orientation for the case of pyrimidine targets.35,36 Ab-initio 

molecular calculations have been carried out with the MOLPRO code.37 The nucleobase targets 

are kept frozen in their ground state geometry during the collision process. The calculation has 

been performed in Cartesian coordinates, with no symmetries. All electrons have been 

considered for C, N and H atoms with the 6-311G** basis set, although the 18 core electrons 

of potassium have been treated through the ECP18sdf core-electron pseudopotential38, with the 

corresponding basis set. The natural molecular orbitals for the K–Ad and K–9mAd have been 

determined by state-averaged CASSCF calculations for the reaction coordinate R = 10 Å 

corresponding to the asymptotic region. Similar active spaces have been considered for both 

targets in order to compare each system at the same level of accuracy. The 1s orbitals of carbon, 

nitrogen and oxygen are treated as frozen cores. The resultant highest occupied molecular 

orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) for adenine and 9-
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methyl adenine are shown in FIG. 2 together with the corresponding orbitals without the 

presence of potassium. For adenine orbitals, the present results are in good agreement with a 

recent study using the CAP/SAC-CI method.39 The polarization by the potassium atom induces 

a global shift in energy of about 2 eV for the π orbitals but the effect remains weak on the σ 

orbitals. 

 

IV. RESULTS AND DISCUSSION 

Our recent short communication on electron transfer from neutral potassium atoms to Pu, Ad, 

9-mAd, 6-dimAd and 2-Dad showed that dehydrogenated parent anion formation can be 

achieved by selective breaking of C–H or N–H bonds, depending on the collision energy.11 

Based on the same experiments, the present work extends the analysis to the full fragmentation 

pattern of the TNIs.  The two papers are complementary and the reader is recommended to read 

both for a full investigation of the collision dynamics. Dissociative electron transfer TOF mass 

spectra were recorded at lab-frame collision energies of 12–100 eV (3.8–68.3 eV in the centre–

of–mass frame and from now on referred as available energy). TABLE I is a compilation of all 

fragment anions detected at 12, 15, 30, 50, 70 and 100 eV lab frame collision energies. 

FIG. 3 shows the negative ion TOF mass spectra recorded at 30 eV for Pu, Ad and 6-dimAd, 

FIG. 4 for Ad and Pu at 70 eV, and FIG. 5 for 2-DAd and 9-mAd at 100 eV lab frame collision 

energies with neutral potassium atoms. Branching ratios (BRs) for the major fragments of Ad 

and Pu as a function of the collision energy are presented in FIG. 6. The TOF mass spectra 

show no evidence of parent anion formation (M‒) and are, generally speaking dominated by the 

cyanide anion (CN‒). The absence of M‒ formation is unsurprising since the vertical electron 

affinity of adenine is -0.54 eV.9  The loss of different HCN units from the dehydrogenated 

parent anion of Pu and Ad, (M-H)‒, is schematically presented in TABLE I (see discussion in 

Section C). Another interesting aspect to discuss is the role of the potassium cation in the 

vicinity of the temporary negative ion (TNI) formed upon electron transfer, i.e. K + M → 

(K+M‒) and how the strong Coulomb interaction may affect the decomposition of the TNI. This 

is comprehensively investigated here and a mechanism is proposed with the help of quantum 

chemical calculations below. From the calculations, we also note that the lowest-lying π* states 

are considerably shifted to higher energies (~ 2 eV) in the presence of a potassium cation (some 

of the calculated MOs without the presence of K appear in parenthesis in FIG. 2). 

Finally, accessing a π* state does not lead to direct bond breaking unless a repulsive σ* state is 

crossed diabatically. However, the available energy is enough to give access to intramolecular 

electron transfer (π → σ), which is possible if the nuclear wavepacket survives long enough 
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along the reaction coordinate to allow diabatic coupling between the two states. This is 

discussed below within the scope of the different π* and σ* MOs involved in the formation of 

particular fragment anions. 

A. (M-H)‒, (M-2H)‒ and (M-3H)‒ 

The dehydrogenated closed shell anion (M-H)‒ is observed for all the molecular targets studied 

here and is formed via the ion-pair reaction: 

 

K + M → (K+M‒) → K+ + (M)#‒ → K+ + (M-H)‒ + H     (1) 

 

Reaction (1) represents a direct cleavage of the (C–H) and/or (N–H) bonds (the specific H 

removal can be selected using the collision energy as reported in Ref. 11) and (M)#‒ means a 

TNI formed with an excess of internal energy. Formation of the parent ion with H abstraction 

has been reported in DEA experiments on adenine through vibrational Feshbach resonances14 

and a weak “0 eV” contribution, the latter attributed to vibrationally excited molecules.6 

Adenine BRs as a function of the available energy (FIG. 6a)), show that (Ad-H)‒ is the most 

abundant fragment anion in the low energy collision region and its threshold of formation is 

below 4.0 eV (12 eV in the lab frame). This is consistent with DEA resonances at 1.07 and 1.4 

eV (1.36 eV9) attributed to N9-H excision and 2.2 eV (2.17 eV9) to C6N-H bond breaking.14 

Another interesting aspect of the adenine BRs is that the (Ad-H)‒ yield is generally speaking 

≥50% below 16 eV and strongly dominates at 6.1 eV. Above this energy, the (Ad-H)‒ BR 

decreases while the (CN)‒ BR increases, becoming dominant above 30 eV. This indicates that 

the dehydrogenated parent anion is a precursor in the formation of other fragment anions 

(except NH2‒ formation, see discussion below). 

Although (Pu-H)‒ (FIG. 6b)) is the dominant fragment anion from purine at K collision energies 

below 16 eV, it only accounts for (70±7)% of the total anion yields at 5.8 eV and falls to just 

(35±7)% at 3.8 eV available energy. At this low collision energy (12 eV in the lab frame), (Pu-

H)‒ and NH‒ are the prevalent yields, with the latter contributing to 20% of the fragmentation 

pattern. By analogy with adenine where the threshold for H abstraction from N9 in DEA 

experiments is 0.94 eV,14 we expect that any fragment anion has to be formed after H 

abstraction from purine TNI. We also observe strong competition with CN‒ formation which is 

visible at lab frame collision energies above 30 eV for both adenine and purine. 

From TABLE I we observe loss of more than one hydrogen atom from Pu, Ad, 9-mAd and 6-

dimAd. In the case of 2-DAd we have detected (2-DAd-H)‒ only at 100 eV lab frame collision 

energy. Huber et al.’s 6 DEA experiments on adenine have reported the loss of two H atoms 
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through reactions yielding (M-2H)‒ + H2 and/or (M-2H)‒ + 2H formation. Loss of H2 was 

attributed to the 0.7 eV resonance whereas H + H formation was accessible from the two high 

energy resonances at 7 and 10.6 eV, and loss of an H2 + H (or three H atoms) was reported at 

6.5 and 10.9 eV resonances.6 As these fragment anions are discernible in the present mass 

spectra above a lab frame collision energy of 30 eV (16.6 eV available energy), we conclude 

that these reactions are also accessible in potassium-adenine collisions. The lack of (M-D)– 

signal from 2-DAd was proposed in terms of strong autodetachment competing with 

dissociation as well as to the lack of electron spin density in the C2 position. For more details 

see Ref. 11 Finally, the underlying molecular mechanisms yielding (M-2H)‒ and (M-3H)‒ 

formation are still not yet clear, although we suggest H2 or 2H formation (depending on the 

specific anionic states involved) and the loss of H2 plus an H radical or H+H+H, respectively, 

as proposed by Huber and co-workers.6 In the case of 2-DAd, however, (M-HD)‒ formation is 

absent which can be related to the lack of electrostatic potentials around C2 as well as to 

enhanced autodetachment due to isotopic labelling. Further investigations are needed to clarify 

these processes, notably with isotopic labelling in other positions. 

  

B. (M-CH3)‒ and (M-NH2)‒ 

Formation of (M-CH3)‒ and (M-NH2)‒ from potassium collisions with 9-methyl adenine occurs 

at 67 eV in the centre-of-mass frame (see FIG.5). The electron spin densities in FIG. 2 for 9-

methyl adenine suggest that the electron may be initially transferred to the π2* and π3* states 

and subsequently to the σ1* state, resulting in dissociation. Alternatively, a direct initial transfer 

to the σ1* state and subsequent dissociation may occur. The present work does not provide 

evidence to assess the relative contributions of these two plausible pathways. It is interesting to 

note that similar dynamics have been discussed by Almeida et al.40 in pyrimidine bases. In the 

case of 3-methyl uracil, the closeness of the vertical transition energies of the π* and σ* states 

did not allow us to specify the dominant pathway to dissociation. 

The loss of a CH3 group is only visible from 9-mAd and 6-dimAd (respectively yielding ions 

with m/z 134 and 148 – see Fig. 3 and Fig. 5) but there is no evidence for these channels at 15 

eV lab frame11. This suppression can be rationalised in terms of a slow collision process (~68 

fs) enhancing Coulomb stabilization of the TNI by the proximate K+ ion, increasing the 

probability of intramolecular electron transfer that may favour dissociation (as is the case for 

NH2‒ formation, see Section IV.F) or may favour autodetachment (supressing dissociation). As 

far as authors are aware, no DEA experiments have been produced these fragment anions. 
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Now we turn to the loss of an NH2 group from adenine (TABLE I) producing a negative ion 

with m/z 119 (see also FIG. 3). The DEA data of Huber et al.6  reveals a dissociation channel 

at low electron energies, with a notably strong resonance feature at 0 eV indicating an 

exothermal character to the decomposition reaction. The TOF mass spectrum at 12 eV (not 

shown here) and 15 eV lab frame collision energy11 show no traces of (Ad-NH2)‒ formation. 

This can be explained under the same rationale of longer transit time of K+ near the TNI 

promoting either autodetachment or an alternative dissociation, which are reasonable arguments 

given the prominent decrease of (Ad-H)‒ BR at these energies as well as other fragment anions 

formation (see FIG. 6a). 

 

C. Loss of HCN 

Hydrogen cyanide abstraction is more evident in the TOF mass spectra of Pu, Ad and 9-mAd 

(FIG. 5) leading to ring opening, with assignment of the fragment anions indicated in TABLE 

I, where arrows indicate the sequential HCN abstractions. The HOMOs of Ad and 9-mAd in 

FIG. 1 are localized on the rings showing relevant π character while the LUMOs appear with 

strong π* antibonding with nodes along the C–N bonds. Such electron spin densities are 

indicative of favourable bond breaking in particular where curve crossing in the diabatically 

frame description may be relevant (i.e. π4*/σ2*). Though such cleavage, e.g. C2-N1, C4-N3 and 

C5-N7, C8-N9, may leave the remaining neutral HCN intact. 

Within the collision energy range studied for adenine and its derivatives, i.e. for the available 

energy (3.8–68.3 eV), such loss of HCN units is operative since the estimated threshold of the 

decomposition reaction requires 3.89 eV given that ΔfHg° (C5H5N5) = 225.7 kJ/mol (2.34 eV),41 

ΔfHg° (C4H3N4)‒ = 248 kJ/mol (2.57 eV),42 ΔfHg° (HCN) = 135.14 kJ/mol (1.4 eV)42 and ΔfHg° 

(H) = 218 kJ/mol (2.26 eV).42 It is interesting that the loss of HCN from 9-mAd follows methyl 

abstraction from the TNI, whereas in Pu and Ad it takes place after dehydrogenation of the 

parent anion. In the case of adenine, Huber et al.6 reported that fragment anion 107 u, (C4H3N4)‒, 

is formed through loss of HCN from the dehydrogenated parent anion since this reaction is 

energetically more favourable that CN radical and H2 formation. 

 

D. C3N‒ 

The formation of fragment anion with m/z 50 from Ad, 9-mAd and 2-DAd (FIG. 5) is just 

visible at 100 eV lab frame collision energy and totally suppressed at 15 eV.11 Harrison and 

Tennyson43 have recently reported that C3N‒ supports a number of low-lying dissociative TNI 

states. The BR of C3N‒ in FIG. 6a) shows the threshold of formation at ~ 31 eV available energy 
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and increases as a function of the collision energy. We also observe that above this energy the 

cyanide anion is present in the BRs. Although C3N has higher electron affinity (4.54 eV44) than 

CN (3.862 eV45), the former anion results from combined fragmentation of both of rings with 

a considerable energy requirement. Owing to the molecular structure of Ad, C3N‒ can only 

result from the pyrimidine-like structure decomposition whereas CN‒ formation may proceed 

from the breaking of the five-membered ring in particular in the lower energy regime (see 

discussion below). Interesting to note that we have previously observed C3N‒ fragments from 

potassium collisions with thymine.46 We suggest that in the case of adenine, this fragment anion 

may be formed via concerted mechanisms involving the six-membered ring. 

 

E. CN‒ 

The TOF mass spectra in FIG. 5 at 100 eV lab frame collision energy are dominated by the 

cyanide anion whereas at low collision energies only (M-H)‒, H‒, NH‒, and NH2‒ are 

discernible.11 Hence we can conclude that in the unimolecular decomposition process, the 

dehydrogenated parent anion is a precursor in the formation of fragments that require bond 

cleavages in the rings, namely CN‒. Such a decomposition process was previously observed for 

the pyrimidines investigated in collisional electron transfer experiments.47 DEA experiments 

on adenine show that CN‒ is the most intense anion at electron energies above 5 eV, with 

resonances at 5.8, 6.7 and 11.5 eV.6 In order to aid our understanding of the underlying 

molecular mechanisms and the accessed states that are responsible for CN‒ formation in 

adenine-potassium collisions, FIG. 2 shows three calculated π* orbitals at 4.3 eV (π1*), 5.5 eV 

(π2*) and 7.0 eV (π3*). At higher energies two σ* resonances at 8.8 (σ3*) and 10.3 eV (σ4*) are 

present, with σ3* along the C2–N1 bond. Note that there is no appreciable difference as to the 

energy of 9-mAd LUMOs. Accordingly, the adenine BRs in FIG. 6a) show that CN‒ cannot be 

produced £6.1 eV (£15 eV collision energy) which can be related to an electron promotion to 

the π2*/π3* orbital. Accessing π3* is achieved by increasing the collision energy, and so the CN‒ 

yield, with bond-breaking certainly occurring through access of the σ* states. Now, a question 

that stands to be answered is where does CN‒ formation proceed from? At threshold, is it 

initially formed from the fragmentation of the five-membered ring or is it the result of a 

combined contribution of breaking both rings? A careful inspection of FIG. 5 (100 eV lab-

frame collision energy) for Ad and 9-mAd shows a weak fragment anion at 107 u that has been 

assigned in TABLE I to (C4H3N4)‒ but is totally suppressed at 15 eV lab frame collision 

energy.11 The BRs in Fig. 6 indicate that fragment anions (with the exception of NH2‒) result 

from decomposition of the dehydrogenated parent anion, and this rationale also holds for 9-
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mAd. By analogy with Denifl et al.’s14  DEA experiments, this signifies that H abstraction is 

already operative at ~1eV. In the case of potassium-adenine collisions, the dehydrogenated 

parent anion may be formed with an excess of internal energy resulting in fragmentation 

yielding two complementary channels: 

 

(M-H) #‒ → CN‒ + (C4H3N4) + H        (2a) 

(M-H) #‒ → CN + (C4H3N4)‒ + H        (2b) 

 

These fragmentation pathways may proceed through two routes which involve breaking of N1-

C6 and C6-C5 bonds (six-membered ring), and N7-C8 and N9-C4 bonds (five-membered ring). 

(C4H3N4)‒ formation may proceed from both routes at high collision energies (typically 100 eV 

in the lab frame. Breaking N7-C8 and N9-C4 bonds is the most probable route at low collision 

energies, corresponding to the calculated π2* and π3* molecular orbitals, and most likely leading 

to the formation of CN‒ in view of its high electron affinity (3.8620 ± 0.0050 eV).42 

 

F. NH2‒ and NH‒ 

The TOF mass spectrum of Pu at 15 eV lab frame collision energy11 shows a significant 

contribution of NH‒ and NH2‒ relative to the (Pu-H)‒ yield. In the case of Ad at 12 eV (see its 

BR in FIG. 6a) we observe that NH2‒/(Ad-H)‒ appears at a ratio of ~1:2. The NH2‒ threshold of 

formation from adenine in DEA was estimated at ~3.1 eV given that D(C–NH2) = 3.9 eV5 and 

EA(NH2) = (0.771 ± 0.005) eV.48 The BRs in Fig. 6 show that NH2‒ is not formed by dissocation 

of the dehydrogenated parent anion. At 12 eV lab frame collision energy, the available energy 

amounts to 4.0 eV which is enough to yield the NH2 anion. At 6.1 eV available energy (15 eV 

in the lab frame), the TNI is formed with an excess of internal energy which can be statistically 

distributed over the internal degrees of freedom, resulting in NH2‒ formation even with a modest 

electron affinity. This assumption seems reasonable since the electrostatic potential maps of Ad 

show a region of positive electron spin density around the –NH2 group.14 However, the high 

relative intensity of the NH2‒ signal in the present data at low collision energies can only be 

attributed to the presence of K+ in the vicinity of the TNI allowing intramolecular electron 

transfer from the ring to –NH2. In the case of Pu, NH‒ and NH2‒ formation mechanism may 

substantially differ from Ad. The isodensity map of purine in Ref. 14 shows that the region 

strongly favourable for electron capture is around the N9–H and the neighbouring C8–H sites. 

As such, NH‒ formation upon electron transfer to purine may proceed through the breaking of 

C4–N9 and C8–N9 bonds and electron capture at NH. Taking D(C–N) = 3.1 eV and EA(NH) 
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= (0.370 ± 0.004) eV,42 the estimated threshold is 5.83 eV. The available energy at a lab-frame 

collision energy of 15 eV is slightly higher than this value and hence this formation mechanism 

is plausible in the present experiments. Finally, regarding NH2‒ formation from purine, we note 

from FIG. 6b) that its yield is slightly lower than NH‒ formation. The NH2‒ / NH‒ ratio remains 

approximately constant when the collision energy is increased to 30 eV lab frame (16 eV 

available energy, FIG. 6b), indicating that the two fragments derive from a common excited 

precursor. The mechanism for amino radical anion formation must involve NH combining with 

a proton transferred from the C8 position. Identifying the specific mechanism is beyond the 

scope of this contribution and quantum chemical calculations would be very helpful clarifying 

the routes of NH2‒ formation.  

 

G. H‒ 

The formation of H‒ can be represented by the reaction: 

 

K + M → K+ + (M)#‒ → K+ + (M-H) + H‒       (3) 

 

The H- yield is clearly visible in 30 eV lab frame collisions (FIG. 3) from Pu only. We do not 

have a strong basis to explain the absence (with the present signal/noise ratios) of this anion in 

the equivalent mass spectra of Ad and 6-dimAd. Huber et al.6 have reported H‒ formation via 

two resonances at 6 and 11 eV, the former almost three times more intense than the latter. The 

resonance at 6 eV may be accessed in potassium collision at 15 eV lab frame (~ 6 eV available 

energy). We observe H− formation from adenine in 100 eV lab frame collisions (FIG. 5), albeit 

with a very low yield. This may suggest that its absence in the present measurements at low 

collision energies is linked to strong competition with other fragment anion channels with 

energetically-similar resonances. 

 

V. CONCLUSIONS 

The present work provides a comprehensive investigation of the decomposition mechanisms of 

Pu, Ad, 9-mAd, 6-dimAD and 2-DAd in collisions with potassium atoms. The major fragment 

anions formation have been investigated as a function of the available energy in the centre-of-

mass frame. In the case of adenine, the dehydrogenated parent anion is shown to be a precursor 

in the formation of the smaller fragment anions, with the exception of NH2‒. We report for the 

first time formation of (M-CH3)‒ from 9-mAd and 6-dimAd. Additionally, C3N‒ formation is 

proposed to proceed through the six-membered ring structure decomposition while the cyanide 
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anion may proceed from the breaking of the five-membered ring particularly in low energy 

collisions. The theoretical calculations reveal how the electronic structures of Ad and 9-mAd 

are modified by the presence of the electron donor and hence provide insights into the electronic 

states that are most likely participate in the major fragment anion channels. The clear 

differences in fragment anion production from adenine in the present electron transfer collisions 

compared with DEA provide further evidence that the specifics of the electron delivery 

mechanisms need to be properly taken into account in nanoscale models of radiation damage 

to DNA. 
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Figure captions 

FIG. 1. Molecular structure of adenine and 9-methyl adenine. 

 

FIG. 2. Calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied 

molecular orbitals (LUMOs) for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence 

of a potassium cation atom in the perpendicular geometry pointing on the N9 atom. In 

parenthesis values calculated without the presence of potassium. Energies in eV. 

 

FIG. 3. Time-of-flight negative ion mass spectra in potassium-purine (Pu), -adenine (Ad) and -

6-dimethyl adenine (6-dimAd) collisions at 30 eV lab frame energy (16.0, 16.6 and 17.4 eV 

available energy in the centre-of-mass, respectively). See text for details. 

 

FIG. 4. Time-of-flight negative ion mass spectra in potassium-adenine (Ad) and - purine (Pu) 

collisions at 70 eV lab frame energy (44.5 and 43.2 eV available energy in the centre-of-mass, 

respectively). See text for details and note that an alterative view of these results is presented 

in our recent communication about formation of dehydrogenated parent anions ((M-H)-) [Ref 

11]. 

 

FIG. 5. Time-of-flight negative ion mass spectra in potassium-purine (Pu), -adenine (Ad), -

adenine-2-d (2-DAd), -9-methyl adenine (9-mAd) and collisions at 100 eV lab frame collision 

energy (63.6, 65.5, 65.6 and 67.0 eV available energy in the centre-of-mass frame, respectively). 

See text for details. 

 

FIG. 6. Branching ratios (fragment anion yield/total anion yield) as a function of the collision 

energy in the centre-of-mass frame: a) adenine (Ad); b) purine (Pu). See text for details. 

 

Table caption 

TABLE I. Negative ions formed in potassium collisions with purine (Pu), adenine (Ad), 9-

methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd) and adenine-2-d (2-DAd). Arrows 

indicate loss of HCN. 
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FIG. 1. Molecular structure of adenine and 9-methyl adenine. 
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FIG. 2. Calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied 

molecular orbitals (LUMOs) for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence 

of a potassium cation atom in the perpendicular geometry pointing on the N9 atom. In 

parenthesis values calculated without the presence of potassium. Energies in eV. 
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FIG. 3. Time-of-flight negative ion mass spectra in potassium-purine (Pu), -adenine (Ad) and -

6-dimethyl adenine (6-dimAd) collisions at 30 eV lab frame energy (16.0, 16.6 and 17.4 eV 

available energy in the centre-of-mass, respectively). See text for details. 
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FIG. 4. Time-of-flight negative ion mass spectra in potassium-adenine (Ad) and - purine (Pu) 

collisions at 70 eV lab frame energy (44.5 and 43.2 eV available energy in the centre-of-mass, 

respectively). See text for details. 
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FIG. 5. Time-of-flight negative ion mass spectra in potassium-purine (Pu), -adenine (Ad), -

adenine-2-d (2-DAd), -9-methyl adenine (9-mAd) and collisions at 100 eV lab frame collision 

energy (63.6, 65.5, 65.6 and 67.0 eV available energy in the centre-of-mass frame, respectively). 

See text for details and note that an alterative view of these results is presented in our recent 

communication about formation of dehydrogenated parent anions ((M-H)-) [Ref 11]. 
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FIG. 6. Branching ratios (fragment anion yield/total anion yield) as a function of the collision 

energy in the centre-of-mass frame: a) adenine (Ad); b) purine (Pu). See text for details. 

 

a) adenine (Ad) 

 
 

b) purine (Pu) 
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TABLE I. Negative ions formed in potassium collisions with purine (Pu), adenine (Ad), 9-

methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd) and adenine-2-d (2-DAd). Arrows 

indicate loss of HCN. 

 

Mass (u) Pu Ad 9-mAd 6-dimAd 2-DAd 

1 H‒ H‒ H‒   

15 NH‒     

16 NH2‒ NH2‒ NH2‒   

26 CN‒ CN‒ CN‒ CN‒ CN‒ 

38  C2N‒ C2N‒   

40   CN2‒/ C2H2N‒   

41 CHN2‒/ C2H3N‒ CHN2‒/ C2H3N‒ CHN2‒/ C2H3N‒ CHN2‒/ C2H3N‒ CHN2‒/ C2H3N‒ 

42 CH2N2‒/ C2H4N‒ CH2N2‒/ C2H4N‒    

50  C3N‒ C3N‒  C3N‒ 

55   C3H5N‒   

64 C3N2‒ C3N2‒ C3N2‒  C3N2‒ 

65 ((CN)2HC)‒ ((CN)2HC)‒  ((CN)2HC)‒ ((CN)2HC)‒ 

79   C4H3N2‒   

80   C4H3N2‒   

92 (Pu-H-HCN)‒ C5H4N2‒  C5H4N2‒  

96  C3H4N4‒    

107  C4H3N4‒ C4H3N4‒   

108  C4H4N4‒    

117  (Ad-H(NH3))‒    

118 (Pu-2H)‒     

119 (Pu-H)‒ (Ad-NH2)‒    

120     (2-DAd-NH2)‒ 

132  (Ad-3H)‒     

133  (Ad-2H)‒ (9-mAd-HCH3)‒ (6-dimAd-(CH3)2)‒  

134  (Ad-H)‒ (9-mAd-CH3)‒   

135     (2-DAd-H)‒ 

146    (6-dimAd-NH3)‒  

147   (9-mAd-2H)‒   

148   (9-mAd-H)‒ (6-dimAd-CH3)‒  

160    (6-dimAd-3H)‒  

162    (6-dimAd-H)‒  

 


