318 research outputs found

    Comparison of GCM- and RCM-simulated precipitation following stochastic postprocessing

    Get PDF
    In order to assess to what extent regional climate models (RCMs) yield better representations of climatic states than general circulation models (GCMs), the output of each is usually directly compared with observations. RCM output is often bias corrected, and in some cases correction methods can also be applied to GCMs. This leads to the question of whether bias-corrected RCMs perform better than bias-corrected GCMs. Here the first results from such a comparison are presented, followed by discussion of the value added by RCMs in this setup. Stochastic postprocessing, based on Model Output Statistics (MOS), is used to estimate daily precipitation at 465 stations across the United Kingdom between 1961 and 2000 using simulated precipitation from two RCMs (RACMO2 and CCLM) and, for the first time, a GCM (ECHAM5) as predictors. The large-scale weather states in each simulation are forced toward observations. The MOS method uses logistic regression to model precipitation occurrence and a Gamma distribution for the wet day distribution, and is cross validated based on Brier and quantile skill scores. A major outcome of the study is that the corrected GCM-simulated precipitation yields consistently higher validation scores than the corrected RCM-simulated precipitation. This seems to suggest that, in a setup with postprocessing, there is no clear added value by RCMs with respect to downscaling individual weather states. However, due to the different ways of controlling the atmospheric circulation in the RCM and the GCM simulations, such a strong conclusion cannot be drawn. Yet the study demonstrates how challenging it is to demonstrate the value added by RCMs in this setup

    Southern African summer-rainfall variability, and its teleconnections, on interannual to interdecadal timescales in CMIP5 models

    Get PDF
    23 pagesInternational audienceThis study provides the first assessment of CMIP5 model performances in simulating southern Africa (SA) rainfall variability in austral summer (Nov–Feb), and its teleconnections with large-scale climate variability at different timescales. Observed SA rainfall varies at three major timescales: interannual (2–8 years), quasi-decadal (8–13 years; QDV) and interdecadal (15–28 years; IDV). These rainfall fluctuations are, respectively, associated with El Niño Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO), interacting with climate anomalies in the South Atlantic and South Indian Ocean. CMIP5 models produce their own variability, but perform better in simulating interannual rainfall variability, while QDV and IDV are largely underestimated. These limitations can be partly explained by spatial shifts in core regions of SA rainfall variability in the models. Most models reproduce the impact of La Niña on rainfall at the interannual scale in SA, in spite of limitations in the representation of ENSO. Realistic links between negative IPO are found in some models at the QDV scale, but very poor performances are found at the IDV scale. Strong limitations, i.e. loss or reversal of these teleconnections, are also noted in some simulations. Such model errors, however, do not systematically impact the skill of simulated rainfall variability. This is because biased SST variability in the South Atlantic and South Indian Oceans strongly impact model skills by modulating the impact of Pacific modes of variability. Using probabilistic multi-scale clustering, model uncertainties in SST variability are primarily driven by differences from one model to another, or comparable models (sharing similar physics), at the global scale. At the regional scale, i.e. SA rainfall variability and associated teleconnections, while differences in model physics remain a large source of uncertainty, the contribution of internal climate variability is increasing. This is particularly true at the QDV and IDV scales, where the individual simulations from the same model tend to differentiate, and the sampling error increase

    Extreme precipitation in the Netherlands: An event attribution case study

    Get PDF
    Attributing the change in likelihood of extreme weather events, particularly those occurring at small spatiotemporal scales, to anthropogenic forcing is a key challenge in climate science. While a warmer world is associated with an increase in atmospheric moisture on a global scale, the impact on the magnitude of extreme precipitation episodes has substantial regional variability. Analysis of individual cases is important in understanding the extent of these changes on spatial scales relevant to stakeholders. Here, we present a probabilistic attribution analysis of the extreme precipitation that fell in large parts of the Netherlands on 28 July 2014. Using a step-by-step approach, we aim to identify changes in intensity and likelihood of such an event as a result of anthropogenic global warming while highlighting the challenges in performing robust event attribution on high-impact precipitation events that occur at small scales. A method based on extreme value theory is applied to observational data in addition to global and regional climate model ensembles that pass a robust model evaluation process. Results based on observations suggest a strong and significant increase in the intensity and frequency of a 2014-type event as a result of anthropogenic climate change but trends in the model ensembles used are considerably smaller. Our results are communicated alongside considerable uncertainty, highlighting the difficulty in attributing events of this nature. Application of our approach to convection-resolving models may produce a more robust attribution.</p

    Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales

    Get PDF
    Weather and climate play an important role in shaping global wildfire regimes and geographical distributions of burnable area. As projected by the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6), in the near future, fire danger is likely to increase in many regions due to warmer temperatures and drier conditions. General Circulation Models (GCMs) are an important resource in understanding how fire danger will evolve in a changing climate but, to date, the development of fire risk scenarios has not fully accounted for systematic GCM errors and biases. This study presents a comprehensive global evaluation of the spatiotemporal representation of fire weather indicators from the Canadian Forest Fire Weather Index System simulated by 16 GCMs from the 6th Coupled Model Intercomparison Project (CMIP6). While at the global scale, the ensemble mean is able to represent variability, magnitude and spatial extent of different fire weather indicators reasonably well when compared to the latest global fire reanalysis, there is considerable regional and seasonal dependence in the performance of each GCM. To support the GCM selection and application for impact studies, the evaluation results are combined to generate global and regional rankings of individual GCM performance. The findings highlight the value of GCM evaluation and selection in developing more reliable projections of future climate-driven fire danger, thereby enabling decision makers and forest managers to take targeted action and respond to future fire events.</p

    Cognitive Information Processing

    Get PDF
    Contains research objectives and summary of research.Madeline Moses FundNational Science Foundation (Grant GK-33736X1)National Institutes of Health (Grant 5 PO1 GM19428-02)Peter Bent Brigham Hospital, Purchase Order G-33196Associated Press (Grant)National Institutes of Health (Grant 5 PO1 GM14940-07

    The Parallel Complexity of Growth Models

    Full text link
    This paper investigates the parallel complexity of several non-equilibrium growth models. Invasion percolation, Eden growth, ballistic deposition and solid-on-solid growth are all seemingly highly sequential processes that yield self-similar or self-affine random clusters. Nonetheless, we present fast parallel randomized algorithms for generating these clusters. The running times of the algorithms scale as O(log2N)O(\log^2 N), where NN is the system size, and the number of processors required scale as a polynomial in NN. The algorithms are based on fast parallel procedures for finding minimum weight paths; they illuminate the close connection between growth models and self-avoiding paths in random environments. In addition to their potential practical value, our algorithms serve to classify these growth models as less complex than other growth models, such as diffusion-limited aggregation, for which fast parallel algorithms probably do not exist.Comment: 20 pages, latex, submitted to J. Stat. Phys., UNH-TR94-0

    Psychedelics Promote Structural and Functional Neural Plasticity.

    Get PDF
    Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both&nbsp;structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in&nbsp;vitro and in&nbsp;vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders

    Cognitive Information Processing

    Get PDF
    Contains research objectives and summary of research on eight research projects.Joint Services Electronics Program (Contract DAAB07-74-C-0630)National Science Foundation (Grant GK-33736X2)National Science Foundation (Grant EPP74-12653)National Institutes of Health (Grant 5 P01 GM19428-03)National Institutes of Health (Grant 3 PO1 GM19428-03S1)National Institutes of Health (Grant 5 PO1 GM14940-07)Peter Bent Brigham Hospital Purchase Order G-33196 #2Associated Press (Grant
    corecore