192 research outputs found

    The validity and reliability of observational assessment tools available to measure fundamental movement skills in school-age children: A systematic review

    Get PDF
    Background Fundamental Movement Skills (FMS) play a critical role in ontogenesis. Many children have insufficient FMS, highlighting the need for universal screening in schools. There are many observational FMS assessment tools, but their psychometric properties are not readily accessible. A systematic review was therefore undertaken to compile evidence of the validity and reliability of observational FMS assessments, to evaluate their suitability for screening. Methods A pre-search of ‘fundamental movement skills’ OR ‘fundamental motor skills’ in seven online databases (PubMed, Ovid MEDLINE, Ovid Embase, EBSCO CINAHL, EBSCO SPORTDiscus, Ovid PsycINFO and Web of Science) identified 24 assessment tools for school-aged children that: (i) assess FMS; (ii) measure actual motor competence and (iii) evaluate performance on a standard battery of tasks. Studies were subsequently identified that: (a) used these tools; (b) quantified validity or reliability and (c) sampled school-aged children. Study quality was assessed using COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklists. Results Ninety studies were included following the screening of 1863 articles. Twenty-one assessment tools had limited or no evidence to support their psychometric properties. The Test of Gross Motor Development (TGMD, n = 34) and the Movement Assessment Battery for Children (MABC, n = 37) were the most researched tools. Studies consistently reported good evidence for validity, reliability for the TGMD, whilst only 64% of studies reported similarly promising results for the MABC. Twelve studies found good evidence for the reliability and validity of the Bruininks-Oseretsky Test of Motor Proficiency but poor study quality appeared to inflate results. Considering all assessment tools, those with promising psychometric properties often measured limited aspects of validity/reliability, and/or had limited feasibility for large scale deployment in a school-setting. Conclusion There is insufficient evidence to justify the use of any observational FMS assessment tools for universal screening in schools, in their current form

    Fundamental Movement Skills and Their Assessment in Primary Schools from the Perspective of Teachers

    Get PDF
    Evidence suggests that children struggle to acquire age-appropriate fundamental movement skills (FMS), despite their importance for facilitating physical activity. This has led to calls for routine school-based screening of children’s FMS. However, there is limited research exploring schools’ capacity to conduct such assessments. This study investigated what factors might affect the adoption and implementation of FMS assessments in primary schools. School staff (n = 853) completed an online questionnaire developed using the Capability, Opportunity, Motivation and Behavior (COM-B) model. A majority reported that knowledge of pupils’ FMS ability would be beneficial (65.3%), and 71.8% would assess FMS if support was provided. Barriers included: Capability – few possessed knowledge of FMS (15%); Opportunity – teachers reported 30–60 minutes as acceptable for assessing a class, a substantially shorter period than current assessments require; Motivation – 57.2% stated FMS assessments would increase workload stress. Solutions to these issues are discussed using the COM-B theoretical framework

    Developing and validating a school-based screening tool of Fundamental Movement Skills (FUNMOVES) using Rasch analysis

    Get PDF
    Background A large proportion of children are not able to perform age-appropriate fundamental movement skills (FMS). Thus, it is important to assess FMS so that children needing additional support can be identified in a timely fashion. There is great potential for universal screening of FMS in schools, but research has established that current assessment tools are not fit for purpose. Objective To develop and validate the psychometric properties of a FMS assessment tool designed specifically to meet the demands of universal screening in schools. Methods A working group consisting of academics from developmental psychology, public health and behavioural epidemiology developed an assessment tool (FUNMOVES) based on theory and prior evidence. Over three studies, 814 children aged 4 to 11 years were assessed in school using FUNMOVES. Rasch analysis was used to evaluate structural validity and modifications were then made to FUNMOVES activities after each study based on Rasch results and implementation fidelity. Results The initial Rasch analysis found numerous psychometric problems including multidimensionality, disordered thresholds, local dependency, and misfitting items. Study 2 showed a unidimensional measure, with acceptable internal consistency and no local dependency, but that did not fit the Rasch model. Performance on a jumping task was misfitting, and there were issues with disordered thresholds (for jumping, hopping and balance tasks). Study 3 revealed a unidimensional assessment tool with good fit to the Rasch model, and no further issues, once jumping and hopping scoring were modified. Implications The finalised version of FUNMOVES (after three iterations) meets standards for accurate measurement, is free and able to assess a whole class in under an hour using resources available in schools. Thus FUNMOVES has the potential to allow schools to efficiently screen FMS to ensure that targeted support can be provided and disability barriers removed

    Search for lepton flavor violating decays of a heavy neutral particle in p-pbar collisions at root(s)=1.8 TeV

    Get PDF
    We report on a search for a high mass, narrow width particle that decays directly to e+mu, e+tau, or mu+tau. We use approximately 110 pb^-1 of data collected with the Collider Detector at Fermilab from 1992 to 1995. No evidence of lepton flavor violating decays is found. Limits are set on the production and decay of sneutrinos with R-parity violating interactions.Comment: Figure 2 fixed. Reference 4 fixed. Minor changes to tex

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Chlamydiae </it>are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species.</p> <p>Results</p> <p>Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the <it>C. trachomatis </it>and <it>C. pneumoniae </it>sequences tested, validating the data obtained <it>in silico</it>. We identified a <it>macro </it>domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions.</p> <p>Conclusions</p> <p>The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.</p

    An RNAi in silico approach to find an optimal shRNA cocktail against HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 can be inhibited by RNA interference <it>in vitro </it>through the expression of short hairpin RNAs (shRNAs) that target conserved genome sequences. <it>In silico </it>shRNA design for HIV has lacked a detailed study of virus variability constituting a possible breaking point in a clinical setting. We designed shRNAs against HIV-1 considering the variability observed in naïve and drug-resistant isolates available at public databases.</p> <p>Methods</p> <p>A Bioperl-based algorithm was developed to automatically scan multiple sequence alignments of HIV, while evaluating the possibility of identifying dominant and subdominant viral variants that could be used as efficient silencing molecules. Student t-test and Bonferroni Dunn correction test were used to assess statistical significance of our findings.</p> <p>Results</p> <p>Our <it>in silico </it>approach identified the most common viral variants within highly conserved genome regions, with a calculated free energy of ≥ -6.6 kcal/mol. This is crucial for strand loading to RISC complex and for a predicted silencing efficiency score, which could be used in combination for achieving over 90% silencing. Resistant and naïve isolate variability revealed that the most frequent shRNA per region targets a maximum of 85% of viral sequences. Adding more divergent sequences maintained this percentage. Specific sequence features that have been found to be related with higher silencing efficiency were hardly accomplished in conserved regions, even when lower entropy values correlated with better scores. We identified a conserved region among most HIV-1 genomes, which meets as many sequence features for efficient silencing.</p> <p>Conclusions</p> <p>HIV-1 variability is an obstacle to achieving absolute silencing using shRNAs designed against a consensus sequence, mainly because there are many functional viral variants. Our shRNA cocktail could be truly effective at silencing dominant and subdominant naïve viral variants. Additionally, resistant isolates might be targeted under specific antiretroviral selective pressure, but in both cases these should be tested exhaustively prior to clinical use.</p

    nocoRNAc: Characterization of non-coding RNAs in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.</p> <p>Results</p> <p>We present <smcaps>NOCO</smcaps>RNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. <smcaps>NOCO</smcaps>RNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and <smcaps>NOCO</smcaps>RNAc to the genome of <it>Streptomyces coelicolor </it>and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.</p> <p>Conclusions</p> <p>We have developed <smcaps>NOCO</smcaps>RNAc, a framework that facilitates the automated characterization of functional ncRNAs. <smcaps>NOCO</smcaps>RNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. <smcaps>NOCO</smcaps>RNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at <url>http://www.zbit.uni-tuebingen.de/pas/nocornac.htm</url>.</p

    Genome-Wide Identification, Characterization and Phylogenetic Analysis of the Rice LRR-Kinases

    Get PDF
    LRR-kinases constitute the largest subfamily of receptor-like kinases in plants and regulate a wide variety of processes related to development and defense. Through a reiterative process of sequence analysis and re-annotation, we identified 309 LRR-kinase genes in the rice genome (Nipponbare). Among them, 127 genes in the Rice Annotation Project Database and 85 in Refseq of NCBI were amended (in addition, 62 LRR-kinase genes were not annotated in Refseq). The complete set of LRR-kinases was characterized. These LRR-kinases were classified into five groups according to phylogenetic analysis, and the genes in groups 1, 2, 3 and 4 usually have fewer introns than those in group 5. The introns in the LRR domain, which are highly conserved in regards to their positions and configurations, split the first Leu or other amino residues at this position of the ‘xxLxLxx’ motif with phase 2 and usually separate one or more LRR repeats exactly. Tandemly repeated LRR motifs have evolved from exon duplication, mutation and exon shuffling. The extensive distribution and diversity of the LRR-kinase genes have been mainly generated by tandem duplication and mutation after whole genome duplication. Positive selection has made a limited contribution to the sequence diversity after duplication, but positively selected sites located in the LRR domain are thought to involve in the protein-protein interaction
    corecore