74 research outputs found

    APP Homodimers Transduce an Amyloid-β-Mediated Increase in Release Probability at Excitatory Synapses

    Get PDF
    SummaryAccumulation of amyloid-β peptides (Aβ), the proteolytic products of the amyloid precursor protein (APP), induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer’s disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD) mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer’s disease

    In Vivo Measurement of Brain GABA Concentrations by Magnetic Resonance Spectroscopy in Smelters Occupationally Exposed to Manganese

    Get PDF
    Background: Exposure to excessive manganese (Mn) levels is known to induce psychiatric and motor disorders including parkinsonian symptoms. Therefore finding a reliable means for early detection of Mn neurotoxicity is desirable. Objectives: Our goal was to study whether in-vivo brain levels of gamma-aminobutyric acid (GABA), N-acetylaspartate (NAA) and other brain metabolites in smelters were altered as a consequence of Mn exposure. Methods: T1-weighted MRI was used to visualize Mn deposition in the brain. Magnetic resonance spectroscopy (MRS) was used to quantify concentrations of NAA, glutamate and other brain metabolites in globus pallidus, putamen, thalamus, and frontal cortex from a well-established cohort of 10 male Mn-exposed smelters and 10 male age-matched control subjects. The MEGA-PRESS MRS sequence was used to determine GABA levels in a region encompassing the thalamus and adjacent parts of the basal ganglia ("GABA-VOI"). Results: Seven out of ten exposed subjects showed clear T1-hyperintense signals in the globus pallidus indicating Mn accumulation. We found a significant increase (82%; p=0.014) of GABA/tCr in the GABA-VOI of Mn-exposed subjects, as well as a distinct decrease (9%, p=0.04) of NAA/tCr in frontal cortex that strongly correlated (R= - 0.93, p<0.001) with cumulative Mn exposure. Conclusions: We demonstrated elevated GABA levels in the thalamus and adjacent basal ganglia and decreased frontal cortex NAA levels, indicating neuronal dysfunction in a brain area not primarily targeted by Mn. Therefore, the non-invasive in vivo MRS measurement of GABA and NAA may prove to be a powerful tool for detecting presymptomatic effects of Mn neurotoxicity

    Implementation of 3 T Lactate-Edited 3D 1H MR Spectroscopic Imaging with Flyback Echo-Planar Readout for Gliomas Patients

    Get PDF
    The purpose of this study was to implement a new lactate-edited 3D 1H magnetic resonance spectroscopic imaging (MRSI) sequence at 3 T and demonstrate the feasibility of using this sequence for measuring lactate in patients with gliomas. A 3D PRESS MRSI sequence incorporating shortened, high bandwidth 180° pulses, new dual BASING lactate-editing pulses, high bandwidth very selective suppression (VSS) pulses and a flyback echo-planar readout was implemented at 3 T. Over-prescription factor of PRESS voxels was optimized using phantom to minimize chemical shift artifacts. The lactate-edited flyback sequence was compared with lactate-edited MRSI using conventional elliptical k-space sampling in a phantom and volunteers, and then applied to patients with gliomas. The results demonstrated the feasibility of detecting lactate within a short scan time of 9.5 min in both phantoms and patients. Over-prescription of voxels gave less chemical shift artifacts allowing detection of lactate on the majority of the selected volume. The normalized SNR of brain metabolites using the flyback encoding were comparable to the SNR of brain metabolites using conventional phase encoding MRSI. The specialized lactate-edited 3D MRSI sequence was able to detect lactate in brain tumor patients at 3 T. The implementation of this technique means that brain lactate can be evaluated in a routine clinical setting to study its potential as a marker for prognosis and response to therapy

    Elevated Pontine and Putamenal GABA Levels in Mild-Moderate Parkinson Disease Detected by 7 Tesla Proton MRS

    Get PDF
    Background: Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However, postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD. Neurochemical correlates of this early pathological involvement in PD are unknown. Methodology/Principal Finding: To map biochemical alterations in the brains of individuals with mild-moderate PD we quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance spectroscopy. Thirteen individuals with idiopathic PD (Hoehn &amp; Yahr stage 2) and 12 age- and gender-matched healthy volunteers participated in the study. c-Aminobutyric acid (GABA) concentrations in the pons and putamen were significantly higher in patients (N = 11, off medications) than controls (N = 11, p,0.001 for pons and p,0.05 for putamen). The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical differences were observed between patients and controls. Conclusion/Significance: The GABA elevation in the putamen is consistent with prior postmortem findings in patients with PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of th

    Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites

    Get PDF
    Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels

    Molecular psychiatry of zebrafish

    Get PDF
    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research

    Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis

    Get PDF
    The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe

    Non-Sinusoidal Activity Can Produce Cross-Frequency Coupling in Cortical Signals in the Absence of Functional Interaction between Neural Sources

    No full text
    <div><p>The analysis of cross-frequency coupling (CFC) has become popular in studies involving intracranial and scalp EEG recordings in humans. It has been argued that some cases where CFC is mathematically present may not reflect an interaction of two distinct yet functionally coupled neural sources with different frequencies. Here we provide two empirical examples from intracranial recordings where CFC can be shown to be driven by the shape of a periodic waveform rather than by a functional interaction between distinct sources. Using simulations, we also present a generalized and realistic scenario where such coupling may arise. This scenario, which we term waveform-dependent CFC, arises when sharp waveforms (e.g., cortical potentials) occur throughout parts of the data, in particular if they occur rhythmically. Since the waveforms contain both low- and high-frequency components, these components can be inherently phase-aligned as long as the waveforms are spaced with appropriate intervals. We submit that such behavior of the data, which seems to be present in various cortical signals, cannot be interpreted as reflecting functional modulation between distinct neural sources without additional evidence. In addition, we show that even low amplitude periodic potentials that cannot be readily observed or controlled for, are sufficient for significant CFC to occur.</p></div
    corecore