59 research outputs found

    Hypotheses for the Origin of the Hypanis Fan-Shaped Deposit at the Edge of the Chryse Escarpment, Mars: Is it a Delta?

    Get PDF
    We investigated the origin of the fan-shaped deposit at the end of Hypanis Valles that has previously been proposed as an ExoMars, Mars 2020, and human mission candidate landing site, and found evidence that the landform is an ancient delta. Previous work suggests that the deposit originated from a time of fluvial activity both distinct from and prior to catastrophic outflow, and crater counting placed the deposit’s age at  ≥ 3.6 Ga. We found over 30 thin sedimentary strata in the proposed delta wall, and from our slope analysis conclude that the fluvial sequence is consistent with a lowering/retreating shoreline. We measured nearly horizontal bedding dip angles ranging from 0° to 2° over long stretches of cliff and bench exposures seen in HiRISE images and HiRISE stereo DTMs. From THEMIS night IR images we determined that the fan-shaped deposit has a low thermal inertia (150-240 Jm-2 K-1 s-1/2) and the surrounding darker-toned units correspond to thermal inertia values as high as 270-390 Jm-2 K-1 s-1/2. We interpret these findings to indicate that the fan-shaped deposit consists mostly of silt-sized and possibly finer grains, and that the extremely low grade and large lateral extent of these beds implies that the depositional environment was calm and relatively long-lived. We interpret the geomorphology and composition as incompatible with an alluvial fan or mudflow hypothesis. From our stratigraphic mapping we interpret the order of events which shaped the region. After the Chryse impact, sediment filled the basin, a confined lake or sea formed allowing a large delta to be deposited near its shoreline, the water level receded to the north, darker sedimentary/volcanic units covered the region and capped the light-toned deposit as hydro-volcanic eruptions shaped the interior of Lederberg crater, freeze/thaw cycles and desiccation induced local fracturing, and finally wrinkle ridges associated with rounded cones warped the landscape following trends in degraded crater rims and existing tectonic features. The ancient deltaic deposit we observe today was largely untouched by subsequent catastrophic outflows, and its surface has been only moderately reshaped by over 3 billion years of aeolian erosion

    Linking micellar structures to hydrogelation for salt-triggered dipeptide gelators

    Get PDF
    Some functionalised dipeptides can form hydrogels when salts are added to solutions at high pH. We have used surface tension, conductivity, rheology, optical, confocal and scanning electron microscopy, 1H NMR and UV-Vis spectroscopy measurements to characterise fully the phase behaviour of solutions of one specific gelator, 2NapFF, at 25 °C at pH 10.5. We show that this specific naphthalene–dipeptide undergoes structural transformations as the concentration is increased, initially forming spherical micelles, then worm-like micelles, followed by association of these worm-like micelles. On addition of a calcium salt, gels are generally formed as long as worm-like micelles are initially present in solution, although there are structural re-organisations that occur at lower concentrations, allowing gelation at lower than expected concentration. Using IR and SANS, we show the differences between the structures present in the solution and hydrogel phases

    The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment

    Get PDF
    Advancing age is associated with substantial increases in the incidence rates of common diseases affecting the prostate gland including benign prostatic hyperplasia (BPH) and prostate carcinoma. The prostate is comprised of a functional secretory epithelium, a basal epithelium, and a supporting stroma comprised of structural elements, and a spectrum of cell types that includes smooth muscle cells, fibroblasts, and inflammatory cells. As reciprocal interactions between epithelium and stromal constituents are essential for normal organogenesis and serve to maintain normal functions, discordance within the stroma could permit or promote disease processes. In this study we sought to identify aging-associated alterations in the mouse prostate microenvironment that could influence pathology.We quantitated transcript levels in microdissected glandular-adjacent stroma from young (age 4 months) and old (age 20-24 months) C57BL/6 mice, and identified a significant change in the expression of 1259 genes (p<0.05). These included increases in transcripts encoding proteins associated with inflammation (e.g., Ccl8, Ccl12), genotoxic/oxidative stress (e.g., Apod, Serpinb5) and other paracrine-acting effects (e.g., Cyr61). The expression of several collagen genes (e.g., Col1a1 and Col3a1) exhibited age-associated declines. By histology, immunofluorescence, and electron microscopy we determined that the collagen matrix is abundant and disorganized, smooth muscle cell orientation is disordered, and inflammatory infiltrates are significantly increased, and are comprised of macrophages, T cells and, to a lesser extent, B cells.These findings demonstrate that during normal aging the prostate stroma exhibits phenotypic and molecular characteristics plausibly contributing to the striking age associated pathologies affecting the prostate
    corecore