2,602 research outputs found
The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A*
We report on the results of calibrating and simulating the instrumental
polarization properties of the ESO VLT adaptive optics camera system
NAOS/CONICA (NACO) in the Ks-band. We use the Stokes/Mueller formalism for
metallic reflections to describe the instrumental polarization. The model is
compared to standard-star observations and time-resolved observations of bright
sources in the Galactic center. We find the instrumental polarization to be
highly dependent on the pointing position of the telescope and about 4% at
maximum. We report a polarization angle offset of 13.28{\deg} due to a position
angle offset of the half-wave plate that affects the calibration of NACO data
taken before autumn 2009. With the new model of the instrumental polarization
of NACO it is possible to measure the polarization with an accuracy of 1% in
polarization degree. The uncertainty of the polarization angle is < 5{\deg} for
polarization degrees > 4%. For highly sampled polarimetric time series we find
that the improved understanding of the polarization properties gives results
that are fully consistent with the previously used method to derive the
polarization. The small difference between the derived and the previously
employed polarization calibration is well within the statistical uncertainties
of the measurements, and for Sgr A* they do not affect the results from our
relativistic modeling of the accretion process.Comment: 16 pages, 15 figures, 5 tables, accepted by A&A on 2010 October 1
Stellar interactions in dense and sparse star clusters
Stellar encounters potentially affect the evolution of the protoplanetary
discs in the Orion Nebula Cluster (ONC). However, the role of encounters in
other cluster environments is less known. We investigate the effect of the
encounter-induced disc-mass loss in different cluster environments. Starting
from an ONC-like cluster we vary the cluster size and density to determine the
correlation of collision time scale and disc-mass loss. We use the NBODY6++
code to model the dynamics of these clusters and analyze the effect of
star-disc encounters. We find that the disc-mass loss depends strongly on the
cluster density but remains rather unaffected by the size of the stellar
population. The essential outcome of the simulations are: i) Even in clusters
four times sparser than the ONC the effect of encounters is still apparent. ii)
The density of the ONC itself marks a threshold: in less dense and less massive
clusters it is the massive stars that dominate the encounter-induced disc-mass
loss whereas in denser and more massive clusters the low-mass stars play the
major role for the disc mass removal. It seems that in the central regions of
young dense star clusters -- the common sites of star formation -- stellar
encounters do affect the evolution of the protoplanetary discs. With higher
cluster density low-mass stars become more heavily involved in this process.
This finding allows for the extrapolation towards extreme stellar systems: in
case of the Arches cluster one would expect stellar encounters to destroy the
discs of most of the low- and high-mass stars in several hundred thousand
years, whereas intermediate mass stars are able to retain to some extant their
discs even under these harsh environmental conditions.Comment: accepted by Astronomy and Astrophysic
A Black Hole in the Galactic Center Complex IRS 13E?
The IRS 13E complex is an unusual concentration of massive, early-type stars
at a projected distance of ~0.13 pc from the Milky Way's central supermassive
black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and
their common nature as massive, young stars it has recently been suggested that
IRS 13E may be the remnant of a massive stellar cluster containing an
intermediate-mass black hole (IMBH) that binds its members gravitationally in
the tidal field of Sgr A*. Here, we present an analysis of the proper motions
in the IRS~13E environment that combines the currently best available data with
a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum
mass of ~10^4 solar masses in order to bind the source complex gravitationally.
This high mass limit in combination with the absence so far of compelling
evidence for a non-thermal radio and X-ray source in IRS 13E make it appear
unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind
the system gravitationally.Comment: accepted by AP
Radio Variability of Sagittarius A* - A 106 Day Cycle
We report the presence of a 106-day cycle in the radio variability of Sgr A*
based on an analysis of data observed with the Very Large Array (VLA) over the
past 20 years. The pulsed signal is most clearly seen at 1.3 cm with a ratio of
cycle frequency to frequency width f/Delta_f= 2.2+/-0.3. The periodic signal is
also clearly observed at 2 cm. At 3.6 cm the detection of a periodic signal is
marginal. No significant periodicity is detected at both 6 and 20 cm. Since the
sampling function is irregular we performed a number of tests to insure that
the observed periodicity is not the result of noise. Similar results were found
for a maximum entropy method and periodogram with CLEAN method. The probability
of false detection for several different noise distributions is less than 5%
based on Monte Carlo tests. The radio properties of the pulsed component at 1.3
cm are spectral index alpha ~ 1.0+/- 0.1 (for S nu^alpha), amplitude Delta
S=0.42 +/- 0.04 Jy and characteristic time scale Delta t_FWHM ~ 25 +/- 5 days.
The lack of VLBI detection of a secondary component suggests that the
variability occurs within Sgr A* on a scale of ~5 AU, suggesting an instability
of the accretion disk.Comment: 14 Pages, 3 figures. ApJ Lett 2000 accepte
Near infrared flares of Sagittarius A*: Importance of near infrared polarimetry
We report on the results of new simulations of near-infrared (NIR)
observations of the Sagittarius A* (Sgr A*) counterpart associated with the
super-massive black hole at the Galactic Center. The observations have been
carried out using the NACO adaptive optics (AO) instrument at the European
Southern Observatory's Very Large Telescope and CIAO NIR camera on the Subaru
telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007
and 28 May 2008). We used a model of synchrotron emission from relativistic
electrons in the inner parts of an accretion disk. The relativistic simulations
have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe
the existence of a correlation between the modulations of the observed flux
density light curves and changes in polarimetric data. Furthermore, we confirm
that the same correlation is also predicted by the hot spot model. Correlations
between intensity and polarimetric parameters of the observed light curves as
well as a comparison of predicted and observed light curve features through a
pattern recognition algorithm result in the detection of a signature of
orbiting matter under the influence of strong gravity. This pattern is detected
statistically significant against randomly polarized red noise. Expected
results from future observations of VLT interferometry like GRAVITY experiment
are also discussed.Comment: 26 pages, 38 figures, accepted for publication by A&
L- and M-band imaging observations of the Galactic Center region
We present near-infrared H-, K-, L- and M-band photometry of the Galactic
Center from images obtained at the ESO VLT in May and August 2002, using the
NAOS/CONICA (H and K) and the ISAAC (L and M) instruments. The large field of
view (70" x 70") of the ISAAC instrument and the large number of sources
identified (L-M data for 541 sources) allows us to investigate colors, infrared
excesses and extended dust emission. Our new L-band magnitude calibration
reveals an offset to the traditionally used calibrations, which we attribute to
the use of the variable star IRS7 as a flux calibrator. Together with new
results on the extinction towards the Galactic Center (Scoville et al. 2003;
Raab 2000), our magnitude calibration results in stellar color properties
expected from standard stars and removes any necessity to modify the K-band
extinction. The large number of sources for which we have obtained L-M colors
allows us to measure the M-band extinction to A_M=(0.056+-0.006)A_V
(approximately =A_L), a considerably higher value than what has so far been
assumed. L-M color data has not been investigated previously, due to lack of
useful M-band data. We find that this color is a useful diagnostic tool for the
preliminary identification of stellar types, since hot and cool stars show a
fairly clear L-M color separation. This is especially important if visual
colors are not available, as in the Galactic Center. For one of the most
prominent dust embedded sources, IRS3, we find extended L- and M-band continuum
emission with a characteristic bow-shock shape. An explanation for this
appearance is that IRS3 consists of a massive, hot, young mass-losing star
surrounded by an optically thick, extended dust shell, which is pushed
northwest by wind from the direction of the IRS16 cluster and SgrA*.Comment: 24 pages, 7 figures, 2 tables, accepted for publication in Astronomy
& Astrophysic
The extreme luminosity states of Sagittarius A*
We discuss mm-wavelength radio, 2.2-11.8um NIR and 2-10 keV X-ray light
curves of the super massive black hole (SMBH) counterpart of Sagittarius A*
(SgrA*) near its lowest and highest observed luminosity states. The luminosity
during the low state can be interpreted as synchrotron emission from a
continuous or even spotted accretion disk. For the high luminosity state SSC
emission from THz peaked source components can fully account for the flux
density variations observed in the NIR and X-ray domain. We conclude that at
near-infrared wavelengths the SSC mechanism is responsible for all emission
from the lowest to the brightest flare from SgrA*. For the bright flare event
of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC
model combined with adiabatic expansion can explain the related peak
luminosities and different widths of the flare profiles obtained in the NIR and
X-ray regime as well as the non detection in the radio domain.Comment: 18 pages, 13 figures, accepted by A&
Simultaneous NIR/sub-mm observation of flare emission from SgrA*
We report on a successful, simultaneous observation and modeling of the
sub-millimeter to near-infrared flare emission of the Sgr A* counterpart
associated with the super-massive black hole at the Galactic center. Our
modeling is based on simultaneous observations that have been carried out on 03
June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and
the LABOCA bolometer at the APEX telescope. Inspection and modeling of the
light curves show that the sub-mm follows the NIR emission with a delay of
1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion
of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&
- …