292 research outputs found

    One HACCP, two approaches: experiences with and perceptions of the Hazard Analysis and Critical Control Points (HACCP) food safety management systems in the US and the EU

    Get PDF
    This paper explores the differences in the use of the Hazard Analysis Critical Control Point (HACCP) system to manage food safety risks in the food chain from farm to fork in the EU and the US. In particular, this paper investigates the current uses and potential expansion of HACCP as a mechanism for the delivery of safe agricultural products, particularly safe produce. It considers not only whether HACCP systems are the best mode of governance for delivering safe food, and describes why HACCP has achieved an important role in the regulatory framework that governs food safety, but asks why this role is different in the EU and US. Within the EU, HACCP is compulsory at all stages of the food chain other than primary production, whereas the mandatory use of HACCP in the US is less widespread. However, the empirical work found that HACCP is being used by businesses in both the EU and US as a basis for organizing their business, even when not required by regulation. Using data derived from semi-structured interviews with regulatory actors in the EU and US, this paper argues that the different approach to HACCP is a result of differing ideas about the role that it plays in the governance of food safety, and the different concepts of the role of regulation in securing safe food. Finally, the paper explores the difficulties of utilizing HACCP to manage produce safety risks, and raises further challenges that must be met in order to ensure that HACCP can successfully fulfill its potential as a governance mechanism

    The Bekenstein Formula and String Theory (N-brane Theory)

    Get PDF
    A review of recent progress in string theory concerning the Bekenstein formula for black hole entropy is given. Topics discussed include p-branes, D-branes and supersymmetry; the correspondence principle; the D- and M-brane approach to black hole entropy; the D-brane analogue of Hawking radiation, and information loss; D-branes as probes of black holes; and the Matrix theory approach to charged and neutral black holes. Some introductory material is included.Comment: 53 pages, LaTeX. v3: Typos fixed, minor updates, references added, brief Note Added on AdS/CF

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur

    M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory

    Get PDF
    A self-contained review is given of the matrix model of M-theory. The introductory part of the review is intended to be accessible to the general reader. M-theory is an eleven-dimensional quantum theory of gravity which is believed to underlie all superstring theories. This is the only candidate at present for a theory of fundamental physics which reconciles gravity and quantum field theory in a potentially realistic fashion. Evidence for the existence of M-theory is still only circumstantial---no complete background-independent formulation of the theory yet exists. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, the theory appeared in a different guise as the discrete light-cone quantization of M-theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory which reduces to a supersymmetric theory of gravity at low energies. Although the fundamental degrees of freedom of matrix theory are essentially pointlike, it is shown that higher-dimensional fluctuating objects (branes) arise through the nonabelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed.Comment: 56 pages, 3 figures, LaTeX, revtex style; v2: references adde

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target

    First joint search for gravitational-wave bursts in LIGO and GEO600 data

    Get PDF
    We present the results of the first joint search for gravitational-wave bursts by the LIGO and GEO600 detectors. We search for bursts with characteristic central frequencies in the band 768 to 2048 Hz in the data acquired between the 22nd of February and the 23rd of March, 2005 (fourth LSC Science Run - S4). We discuss the inclusion of the GEO600 data in the Waveburst-CorrPower pipeline that first searches for coincident excess power events without taking into account differences in the antenna responses or strain sensitivities of the various detectors. We compare the performance of this pipeline to that of the coherent Waveburst pipeline based on the maximum likelihood statistic. This likelihood statistic is derived from a coherent sum of the detector data streams that takes into account the antenna patterns and sensitivities of the different detectors in the network. We find that the coherentWaveburst pipeline is sensitive to signals of amplitude 30 - 50% smaller than the Waveburst-CorrPower pipeline. We perform a search for gravitational-wave bursts using both pipelines and find no detection candidates in the S4 data set when all four instruments were operating stably.Comment: 30 pages, 8 figure

    Troubling identities: teacher education students` constructions of class and ethnicity

    Full text link
    Working with diverse student populations productively depends on teachers and teacher educators recognizing and valuing difference. Too often, in teacher education programs, when markers of identity such as gender, ethnicity, \u27race\u27, or social class are examined, the focus is on developing student teachers\u27 understandings of how these discourses shape learner identities and rarely on how these also shape teachers\u27 identities. This article reports on a research project that explored how student teachers understand ethnicity and socio-economic status. In a preliminary stage of the research, we asked eight Year 3 teacher education students who had attended mainly Anglo-Australian, middle class schools as students and as student teachers, to explore their own ethnic and classed identities. The complexities of identity are foregrounded in both the assumptions we made in selecting particular students for the project and in the ways they constructed their own identities around ethnicity and social class. In this article we draw on these findings to interrogate how categories of identity are fluid, shifting and ongoing processes of negotiation, troubling and complex. We also consider the implications for teacher education.<br /
    • 

    corecore