11 research outputs found
Pharmaceutical pollution of the world's rivers
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals
In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica
The River Madre de Dios (RMD) and its lagoon is a biodiversity rich watershed formed by a system of streams, rivers, channels, and a coastal lagoon communicating with the Caribbean Sea. This basin sustains a large area of agricultural activity (mostly banana, rice, and pineapple) with intensive use of pesticides, continually detected in water samples. We investigated in situ the toxicological effects caused by pesticide runoff from agriculture and the relation of pesticide concentrations with different biological organization levels: early responses in fish biomarkers (sub-organismal), acute toxicity to Daphnia magna (organismal), and aquatic macroinvertebrate community structure. The evaluation was carried out between October 2011 and November 2012 at five sites along the RMD influenced by agricultural discharges and a reference site in a stream outside the RMD that receives less pesticides. Acute toxicity to D. magna was observed only once in a sample from the RMD (Caño Azul); the index of biomarker responses in fish exposed in situ was higher than controls at the same site and at the RMD-Freeman. However, only macroinvertebrates were statistically related to the presence of pesticides, combined with both physical-chemical parameters and habitat degradation. All three groups of variables determined the distribution of macroinvertebrate taxa through the study sites.</p
In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica
<p>The River Madre de Dios (RMD) and its lagoon is a biodiversity rich watershed formed by a system of streams, rivers, channels, and a coastal lagoon communicating with the Caribbean Sea. This basin sustains a large area of agricultural activity (mostly banana, rice, and pineapple) with intensive use of pesticides, continually detected in water samples. We investigated in situ the toxicological effects caused by pesticide runoff from agriculture and the relation of pesticide concentrations with different biological organization levels: early responses in fish biomarkers (sub-organismal), acute toxicity to Daphnia magna (organismal), and aquatic macroinvertebrate community structure. The evaluation was carried out between October 2011 and November 2012 at five sites along the RMD influenced by agricultural discharges and a reference site in a stream outside the RMD that receives less pesticides. Acute toxicity to D. magna was observed only once in a sample from the RMD (Caño Azul); the index of biomarker responses in fish exposed in situ was higher than controls at the same site and at the RMD-Freeman. However, only macroinvertebrates were statistically related to the presence of pesticides, combined with both physical-chemical parameters and habitat degradation. All three groups of variables determined the distribution of macroinvertebrate taxa through the study sites.</p
Intra-annual trends of fungicide residues in waters from vineyard areas in La Rioja region of northern Spain
The temporal trends of fungicides in surface and ground water in 90 samples, including both surface waters (12) and ground waters (78) from an extensive vineyard area located in La Rioja (Spain), were examined between September 2010 and September 2011. Fungicides are used in increasing amounts on vines in many countries, and they may reach the water resources. However, few data have been published on fungicides in waters, with herbicides being the most frequently monitored compounds. The presence, distribution and year-long evolution of 17 fungicides widely used in the region and a degradation product were evaluated in waters during four sampling campaigns. All the fungicides included in the study were detected at one or more of the points sampled during the four campaigns. Metalaxyl, its metabolite CGA-92370, penconazole and tebuconazole were the fungicides detected in the greatest number of samples, although myclobutanil, CGA-92370 and triadimenol were detected at the highest concentrations. The highest levels of individual fungicides were found in Rioja Alavesa, with concentrations of up to 25.52 g L1, and more than 40 % of the samples recorded a total concentration of >0.5 g L1. More than six fungicides were positively identified in a third of the ground and surface waters in all the sampling campaigns. There were no significant differences between the results obtained in the four sampling campaigns and corroborated a pattern of diffuse contamination from the use of fungicides. The results confirm that natural waters in the study area are extremely vulnerable to contamination by fungicides and highlight the need to implement strategies to prevent and control water contamination by these compounds. © 2016 Springer-Verlag Berlin Heidelber
Recommended from our members
Consumption of crustaceans by megaherbivorous dinosaurs: dietary flexibility and dinosaur life history strategies
Abstract Large plant-eating dinosaurs are usually presumed to have been strictly herbivorous, because their derived teeth and jaws were capable of processing fibrous plant foods. This inferred feeding behavior offers a generalized view of dinosaur food habits, but rare direct fossil evidence of diet provides more nuanced insights into feeding behavior. Here we describe fossilized feces (coprolites) that demonstrate recurring consumption of crustaceans and rotted wood by large Late Cretaceous dinosaurs. These multi-liter coprolites from the Kaiparowits Formation are primarily composed of comminuted conifer wood tissues that were fungally degraded before ingestion. Thick fragments of laminar crustacean cuticle are scattered within the coprolite contents and suggest that the dinosaurian defecators consumed sizeable crustaceans that sheltered in rotting logs. The diet of decayed wood and crustaceans offered a substantial supply of plant polysaccharides, with added dividends of animal protein and calcium. Nevertheless, it is unlikely that the fossilized fecal residues depict year-round feeding habits. It is more reasonable to infer that these coprolites reflected seasonal dietary shifts—possibly related to the dinosaurs’ oviparous breeding activities. This surprising fossil evidence challenges conventional notions of herbivorous dinosaur diets and reveals a degree of dietary flexibility that is consistent with that of extant herbivorous birds