19 research outputs found

    Reach Out and Touch Someone: Anticipatory Sensorimotor Processes of Active Interpersonal Touch

    Get PDF
    Anticipating the sensorimotor consequences of an action for both self and other is fundamental for action coordination when individuals socially interact. Somatosensation constitutes an elementary component of social cognition and sensorimotor prediction, but its functions in active social behavior remain unclear. We hypothesized that the somatosensory system contributes to social haptic behavior as evidenced by specific anticipatory activation patterns when touching an animate target (human hand) compared with an inanimate target (fake hand). fMRI scanning was performed during a paradigm that allowed us to isolate the anticipatory representations of active interpersonal touch while controlling for nonsocial sensorimotor processes and possible confounds because of interpersonal relationships or socioemotional valence. Active interpersonal touch was studied both as skin-to-skin contact and as object-mediated touch. The results showed weaker deactivation in primary somatosensory cortex and medial pFC and stronger activation in cerebellum for the animate target, compared with the inanimate target, when intending to touch it with one's own hand. Differently, in anticipation of touching the human hand with an object, anterior inferior parietal lobule and lateral occipital-temporal cortex showed stronger activity. When actually touching a human hand with one's own hand, activation was stronger in medial pFC but weaker in primary somatosensory cortex. The findings provide new insight on the contribution of simulation and sensory prediction mechanisms to active social behavior. They also suggest that literally getting in touch with someone and touching someone by using an object might be approached by an agent as functionally distinct conditions

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Taking two to tango:fMRI analysis of improvised joint action with physical contact

    Get PDF
    <div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div

    Observed Touch on a Non-Human Face Is Not Remapped onto the Human Observer's Own Face

    Get PDF
    Visual remapping of touch (VRT) is a phenomenon in which seeing a human face being touched enhances detection of tactile stimuli on the observer's own face, especially when the observed face expresses fear. This study tested whether VRT would occur when seeing touch on monkey faces and whether it would be similarly modulated by facial expressions. Human participants detected near-threshold tactile stimulation on their own cheeks while watching fearful, happy, and neutral human or monkey faces being concurrently touched or merely approached by fingers. We predicted minimal VRT for neutral and happy monkey faces but greater VRT for fearful monkey faces. The results with human faces replicated previous findings, demonstrating stronger VRT for fearful expressions than for happy or neutral expressions. However, there was no VRT (i.e. no difference between accuracy in touch and no-touch trials) for any of the monkey faces, regardless of facial expression, suggesting that touch on a non-human face is not remapped onto the somatosensory system of the human observer

    Cardio-visual full body illusion alters bodily self-consciousness and tactile processing in somatosensory cortex.

    Get PDF
    Prominent theories highlight the importance of bodily perception for self-consciousness, but it is currently not known whether this is based on interoceptive or exteroceptive signals or on integrated signals from these anatomically distinct systems, nor where in the brain such integration might occur. To investigate this, we measured brain activity during the recently described ‘cardio-visual full body illusion’ which combines interoceptive and exteroceptive signals, by providing participants with visual exteroceptive information about their heartbeat in the form of a periodically illuminated silhouette outlining a video image of the participant’s body and flashing in synchrony with their heartbeat. We found, as also reported previously, that synchronous cardio-visual signals increased self-identification with the virtual body. Here we further investigated whether experimental changes in self-consciousness during this illusion are accompanied by activity changes in somatosensory cortex by recording somatosensory evoked potentials (SEPs). We show that a late somatosensory evoked potential component (P45) reflects the illusory self-identification with a virtual body. These data demonstrate that interoceptive and exteroceptive signals can be combined to modulate activity in parietal somatosensory cortex
    corecore