801 research outputs found

    Pushing 1D CCSNe to explosions: model and SN 1987A

    Full text link
    We report on a method, PUSH, for triggering core-collapse supernova explosions of massive stars in spherical symmetry. We explore basic explosion properties and calibrate PUSH such that the observables of SN1987A are reproduced. Our simulations are based on the general relativistic hydrodynamics code AGILE combined with the detailed neutrino transport scheme IDSA for electron neutrinos and ALS for the muon and tau neutrinos. To trigger explosions in the otherwise non-exploding simulations, we rely on the neutrino-driven mechanism. The PUSH method locally increases the energy deposition in the gain region through energy deposition by the heavy neutrino flavors. Our setup allows us to model the explosion for several seconds after core bounce. We explore the progenitor range 18-21M_{\odot}. Our studies reveal a distinction between high compactness (HC) and low compactness (LC) progenitor models, where LC models tend to explore earlier, with a lower explosion energy, and with a lower remnant mass. HC models are needed to obtain explosion energies around 1 Bethe, as observed for SN1987A. However, all the models with sufficiently high explosion energy overproduce 56^{56}Ni. We conclude that fallback is needed to reproduce the observed nucleosynthesis yields. The nucleosynthesis yields of 5758^{57-58}Ni depend sensitively on the electron fraction and on the location of the mass cut with respect to the initial shell structure of the progenitor star. We identify a progenitor and a suitable set of PUSH parameters that fit the explosion properties of SN1987A when assuming 0.1M_{\odot} of fallback. We predict a neutron star with a gravitational mass of 1.50M_{\odot}. We find correlations between explosion properties and the compactness of the progenitor model in the explored progenitors. However, a more complete analysis will require the exploration of a larger set of progenitors with PUSH.Comment: revised version as accepted by ApJ (results unchanged, text modified for clarification, a few references added); 26 pages, 20 figure

    Perfusion computed tomography relative threshold values in definition of acute stroke lesions

    Get PDF
    BACKGROUND: Perfusion computed tomography (CT) is a relatively new technique that allows fast evaluation of cerebral hemodynamics by providing perfusion maps and gives confirmation of perfusion deficits in ischemic areas. Some controversies exist regarding accuracy of quantitative detection of tissue viability: penumbra (tissue at risk) or core (necrosis). PURPOSE: To define brain tissue viability grade on the basis of the perfusion CT parameters in acute stroke patients. MATERIAL AND METHODS: A multimodal CT imaging protocol; unenhanced CT of the brain, CT angiography of head and neck blood vessels, followed by brain perfusion CT and 24 h follow-up brain CT was performed. Perfusion deficits were detected first visually, with subsequent manual quantitative and relative measurements in affected and contra-lateral hemisphere in 87 acute stroke patients. RESULTS: Visual perfusion deficit on perfusion CT images was found in 78 cases (38 women, 40 men; mean age, 30-84 years). Penumbra lesions (n = 49) and core lesions (n = 42) were detected by increased mean transit time (MTT) on perfusion CT maps in comparison to contra-lateral hemispheres. Cerebral blood volume (CBV) mean values in the penumbra group were increased in the penumbra group and decreased in the core group. Cerebral blood flow (CBF) values were decreased in penumbra and markedly decreased in core lesion. CONCLUSION: Perfusion CT measurements are reliable in estimation of penumbra and core lesions in acute stroke patients, if relative threshold values are used. The most accurate parameter of hypoperfusion is increased MTT above 190%. Relative threshold values for irreversible lesion are CBFpublishersversionPeer reviewe

    Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data

    No full text
    International audienceThe west central African region is characterized by various geological features: Cretaceous rifts (Benue), Tertiary domal uplift (Adamawa volcanic uplift), Tertiary-Recent volcanoes (Cameroon Volcanic Line or CVL), Tertiary sedimentary basins (Chad basins), and cratonic region (Congolese craton). In this study, we investigate the relationship between these tectonic features and the flexural rigidity of the lithosphere in Cameroon, in terms of effective elastic thickness (Te), by the use of the coherence function analysis. For that purpose, we use a new dataset of-32,000 gravity and topography points from Cameroon and the adjacent countries. The Te contour map deduced from this study shows a good relationship between the tectonic provinces and the rigidity of the lithosphere, the minima (14-20 km) are beneath the active rifted and volcanic areas (Benue, CVL, and Adamawa), and the maxima (-40 km) correspond to the Archean reworked unit in Congo. A spectral analysis of the gravity data is performed to determine the crust-mantle boundary in these tectonic provinces. The crustal thickness (Tc) contour map shows a variation from 14 km to about 45 km, consistent with other geophysical data. The lower values (14-20 km) are obtained in central Cameroon on the Adamawa uplift, and the highest values are found in southern Cameroon (Archean reworked Congolese craton). Comparing Te and Tc values shows that there is generally a positive correlation between the two parameters, with an exception in Chad where this correlation is rather negative

    Equalizing resolution in smoothed-particle hydrodynamics calculations using self-adaptive sinc kernels

    Full text link
    The smoothed-particle hydrodynamics (SPH) technique is a numerical method for solving gas-dynamical problems. It has been applied to simulate the evolution of a wide variety of astrophysical systems. The method has a second-order accuracy, with a resolution that is usually much higher in the compressed regions than in the diluted zones of the fluid. In this work, we propose and check a scheme to balance and equalize the resolution of SPH between high- and low-density regions. This method relies on the versatility of a family of interpolators called Sinc kernels, which allows increasing the interpolation quality by varying only a single parameter (the exponent of the Sinc function). The scheme is checked and validated through a number of numerical tests, from standard one-dimensional Riemann problems in shock tubes, to multidimensional simulations of explosions, hydrodynamic instabilities and the collapse of a sun-like polytrope. The analysis of the hydrodynamical simulations suggests that the scheme devised to equalizing accuracy improves the treatment of the post-shock regions and, in general, of the rarefacted zones of fluids while causing no harm to the growth of hydrodynamic instabilities. The method is robust and easy to implement with a low computational overload. It conserves mass, energy, and momentum and reduces to the standard SPH scheme in regions of the fluid that have smooth density gradients.Comment: 29 pages, 18 figures, accepted by A&

    A meta-BACI approach forevaluating management intervention on chronic wasting disease in mule deer

    Get PDF
    Advances in acquiring and analyzing the spatial attributes of data have greatlyenhanced the potential utility of wildlife disease surveillance data for addressing problems ofecological or economic importance. We present an approach for using wildlife diseasesurveillance data to identify areas for (or of ) intervention, to spatially delineate pairedtreatment and control areas, and then to analyze these nonrandomly selected sites in a meta-analysis framework via before–after–control–impact (BACI) estimates of effect size. We applythese methods to evaluate the effectiveness of attempts to reduce chronic wasting disease(CWD) prevalence through intensive localized culling of mule deer (Odocoileus hemionus)innorth-central Colorado, USA. Areas where surveillance data revealed high prevalence or caseclusters were targeted by state wildlife management agency personnel for focal scale (onaverage ,17 km2) culling, primarily via agency sharpshooters. Each area of sustained cullingthat we could also identify as unique by cluster analysis was considered a potential treatmentarea. Treatment areas, along with spatially paired control areas that we constructed post hocin a case-control design (collectively called ‘‘management evaluation sites’’), were thendelineated using home range estimators. Using meta-BACI analysis of CWD prevalence datafor all management evaluation sites, the mean effect size (change of prevalence on treatmentareas minus change in prevalence on their paired control areas) was 0.03 (SE ¼ 0.03); meaneffect size on treatment areas was not greater than on paired control areas. Excluding cullsamples from prevalence estimates or allowing for an equal or greater two-year lag in systemresponses to management did not change this outcome. We concluded that managementbenefits were not evident, although whether this represented true ineffectiveness or was a resultof lack of data or insufficient duration of treatment could not be discerned. Based on ourobservations, we offer recommendations for designing a management experiment with 80%power to detect a 0.10 drop in prevalence over a 6–12-year period

    Influence of Reproductive and Environmental Factors on Population Size .. of Wild Hyacinth [Camassia angusta (Engelm.· and A. Gray) Blank. (Liliaceae)], an Illinois Endangered Species

    Get PDF
    Wild hyacinth (Camassia angusta) is a perennial species native to mesic prairies of the midwestern and south-central United States. In Illinois, the only extant population of this state-endangered species is in a small section of degraded black-soil prairie along a railroad track right-of-way south of Elwin, Macon County. The objectives of this study were to determine the population status, seed production, and effects of scarification and stratification on germination of C. angusta. The population was surveyed from 1990 to 2007. A survey of other plant species present was conducted in 1999. The site consisted of approximately 75% native and 25% exotic species. The number of flowering stems of Camassia angusta fluctuated significantly (28 to 169 plants) during the course of this study. Prescribed spring burns and a construction equipment disturbance may be partially responsible for these fluctuations. A large percentage of undeveloped fruit, resulting in low seed production ( \u3c3,000), as well as low seed germination (8%), may be responsible for this population\u27s inability to increase consistently in number of individuals

    Mapping Brucellosis Increases Relative to Elk Density using Hierarchical Bayesian Models

    Get PDF
    The relationship between host density and parasite transmission is central to the effectiveness of many management strategies. We applied hierarchical Bayesian methods to an 18-yr dataset on elk (Cervus elaphus) brucellosis in the Greater Yellowstone Ecosystem (GYE) and found that increases in brucellosis seroprevalence were strongly correlated with elk densities. Elk that were densely aggregated on supplemental feeding grounds had higher seroprevalence in 1991, but by 2008 many areas distant from the feeding grounds were of comparable seroprevalence. Thus, brucellosis appears to be expanding its range into areas of higher elk density, which is likely to further complicate the United States brucellosis eradication program. The data could not differentiate among linear and non-linear effects of host density, which is a critical area where research can inform management actions. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs

    Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System

    Get PDF
    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U–Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation than commonly invoked climatic fluctuations
    corecore