58 research outputs found

    On the Interpretation of Gravitational Corrections to Gauge Couplings

    Full text link
    Several recent papers discuss gravitational corrections to gauge couplings that depend quadratically on the energy. In the framework of the background-field approach, these correspond in general to adding to the effective action terms quadratic in the field strength but with higher-order space-time derivatives. We observe that such terms can be removed by appropriate local field redefinitions, and do not contribute to physical scattering-matrix elements. We illustrate this observation in the context of open string theory, where the effective action includes, among other terms, the well-known Born-Infeld form of non-linear electrodynamics. We conclude that the quadratically energy-dependent gravitational corrections are \emph{not} physical in the sense of contributing to the running of a physically-measurable gauge coupling, or of unifying couplings as in string theory.Comment: 4 page

    The Einstein-Maxwell system, Ward identities, and the Vilkovisky construction

    Full text link
    The gauge fixing dependence of the one-loop effective action of quantum gravity in the proper-time representation is investigated for a space of arbitrary curvature, and the investigation is extended to Maxwell-Einstein theory. The construction of Vilkovisky and DeWitt for removal of this depence is then considered in general gauges, and it is shown that nontrivial criteria arising from a Ward identity of the theory must be obeyed by the regularization scheme, if the construction is to remove the gauge dependence of quadratic and quartic divergences. The results apply also to non-Abelian gauge theories; they are used to address the question of gauge dependence of asymptotic freedom arising through internal graviton lines at one-loop order as suggested by Robinson and Wilczek.Comment: 35 page

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    QCD Corrections to QED Vacuum Polarization

    Full text link
    We compute QCD corrections to QED calculations for vacuum polarization in background magnetic fields. Formally, the diagram for virtual eeˉe\bar{e} loops is identical to the one for virtual qqˉq\bar{q} loops. However due to confinement, or to the growth of αs\alpha_s as p2p^2 decreases, a direct calculation of the diagram is not allowed. At large p2p^2 we consider the virtual qqˉq\bar{q} diagram, in the intermediate region we discuss the role of the contribution of quark condensates \left and at the low-energy limit we consider the π0\pi^0, as well as charged pion π+π\pi^+\pi^- loops. Although these effects seem to be out of the measurement accuracy of photon-photon laboratory experiments they may be relevant for γ\gamma-ray burst propagation. In particular, for emissions from the center of the galaxy (8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion π0\pi_0 and photons renders a deviation from the power-law spectrum in the TeVTeV range. As for scalar quark condensates \left and virtual qqˉq\bar{q} loops are relevant only for very high radiation density 300MeV/fm3\sim 300 MeV/fm^3 and very strong magnetic fields of order 1014T\sim 10^{14} T.Comment: 15 pages, 4 figures; Final versio

    Action-based recommendation in pull-request development

    Get PDF
    Pull requests (PRs) selection is a challenging task faced by integrators in pull-based development (PbD), with hundreds of PRs submitted on a daily basis to large open-source projects. Managing these PRs manually consumes integrators' time and resources and may lead to delays in the acceptance, response, or rejection of PRs that can propose bug fixes or feature enhancements. On the one hand, well-known platforms for performing PbD, like GitHub, do not provide built-in recommendation mechanisms for facilitating the management of PRs. On the other hand, prior research on PRs recommendation has focused on the likelihood of either a PR being accepted or receive a response by the integrator. In this paper, we consider both those likelihoods, this to help integrators in the PRs selection process by suggesting to them the appropriate actions to undertake on each specific PR. To this aim, we propose an approach, called CARTESIAN (aCceptance And Response classificaTion-based requESt IdentificAtioN) modeling the PRs recommendation according to PR actions. In particular, CARTESIAN is able to recommend three types of PR actions: accept, respond, and reject. We evaluated CARTESIAN on the PRs of 19 popular GitHub projects. The results of our study demonstrate that our approach can identify PR actions with an average precision and recall of about 86%. Moreover, our findings also highlight that CARTESIAN outperforms the results of two baseline approaches in the task of PRs selection

    A many-analysts approach to the relation between religiosity and well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    A Many-analysts Approach to the Relation Between Religiosity and Well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N = 10, 535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β = 0.120). For the second research question, this was the case for 65% of the teams (median reported β = 0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

    Get PDF
    Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications
    corecore