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ABSTRACT
Pull requests (PRs) selection is a challenging task faced by inte-
grators in pull-based development (PbD), with hundreds of PRs
submitted on a daily basis to large open-source projects. Managing
these PRs manually consumes integrators’ time and resources and
may lead to delays in the acceptance, response, or rejection of PRs
that can propose bug fixes or feature enhancements. On the one
hand, well-known platforms for performing PbD, like GitHub, do
not provide built-in recommendation mechanisms for facilitating
the management of PRs. On the other hand, prior research on PRs
recommendation has focused on the likelihood of either a PR being
accepted or receive a response by the integrator. In this paper, we
consider both those likelihoods, this to help integrators in the PRs
selection process by suggesting to them the appropriate actions to
undertake on each specific PR. To this aim, we propose an approach,
calledCARTESIAN (aCceptanceAnd Response classificaT ion-based
requESt IdentifcAtioN ) modeling the PRs recommendation accord-
ing to PR actions. In particular, CARTESIAN is able to recommend
three types of PR actions: accept, respond, and reject. We evaluated
CARTESIAN on the PRs of 19 popular GitHub projects. The results
of our study demonstrate that our approach can identify PR actions
with an average precision and recall of about 86%. Moreover, our
findings also highlight that CARTESIAN outperforms the results of
two baseline approaches in the task of PRs selection.
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1 INTRODUCTION
Popular platforms for open-source software development like GitHub,
BitBucket, and GitLab support Pull-based Development (PbD), i.e.,
the software development process where rather than directly mod-
ifying the source code participants contribute by submitting pull
requests (PRs) that can be reviewedwith final decision, including PR
acceptance, response, and rejection [2, 14]. However, popular GitHub
projects, such as Kubernetes and Rails, receive tens or hundreds
of pull requests daily [16, 34]. Selecting what pull requests to accept
or respond becomes a challenge for the integrators [37], and this
is complicated by the absence of mechanisms for prioritizing pull
requests in PbD platforms.

PbD starts when a contributor creates a separate branch of a
repository, e.g., to try new ideas or fix bugs without affecting the
main branch.1 Once a branch has been created, the contributor
starts adding, editing or deleting files and making commits to the
new branch. The branch commits track the contributor’s progress
on the branch; once all the changes are performed, a new pull re-
quest is created and integrators are requested to merge the changes
into the master branch. Integrators have to manually inspect sub-
mitted pull requests [4, 23] and decide whether to reject them,
request the submitters to apply further changes [43], or merge
them into the master branch. This inspection process consumes a
large amount of integrators’ time [9, 10, 16, 39], with effort being

1https://guides.github.com/introduction/flow/
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also spent on reviewing low-quality (i.e., unlikely to be accepted)
pull requests [10]. Thus, in PbD it is of critical importance to select
PRs that deserve integrators’ attention.

Popular platforms for performing PbD, like GitHub, do not pro-
vide built-in recommendation mechanisms for identifying PRs wor-
thy of the integrators’ attention. Hence, the PbD process efficiency
is compromised, delaying the integrators’ actions and frustrating
the contributors [15]. Indeed, contributors prefer to receive an im-
mediate rejection for the pull requests rather than not receiving
any response [15].

Previous approaches to PR recommendation focus either on
predicting the likelihood of response [35] or the likelihood of accep-
tance [14, 34, 40, 43]. However, approaches focusing exclusively on
response likelihood fail in recognizing PRs that are directly accepted
and merged into the master branch without the need for discus-
sion. For example, this may occur when contributors apply minor
fixes2 or when the changes are performed to fix known issues3.
We empirically assessed that on a total of 278,418 PRs analyzed
in our study, 33,231 PRs (i.e., 11.6%) were accepted without any
discussion. Similarly, relying exclusively on acceptance may lead to
misidentification of PRs that can be accepted after “shepherding”.

For these reasons, we argue that PR recommendation strate-
gies should be based on a more fine-grained classification of PRs:
accept, respond, and reject. We define the three classes as fol-
lows: accept are PRs accepted without any discussion; respond
are PRs accepted after discussion with the contributors; and finally,
reject are PRs which have not been accepted. To automate the
classification of PRs we propose an approach, called CARTESIAN
(aCceptanceAnd Response classificaT ion-based requESt IdentifcAtioN ).
From a practical point of view, CARTESIAN can be used by inte-
grators to have PRs clustered/classified according to the aforemen-
tioned categories. In this way they can prioritize the PR to address,
depending on the actions they want to take. We note that CARTE-
SIAN does not deal with the order of PRs given.

To evaluate CARTESIAN we pose the following questions:

• RQ1: To which extent is CARTESIAN able to identify the
actions that should be undertaken by integrators on PRs?

• RQ2: To which extent can our approach be used to prioritize
useful PRs?

Based on the evaluation of 19 GitHub projects (selection of the
project done as indicated in Section 4), we conclude that CARTE-
SIAN can recommend the right actions on PRs with an average
precision and recall of 86%. Moreover, CARTESIAN significantly
outperforms the baseline approaches in prioritizing PRs that will
be actually accepted and gives high priority to PRs that integrators
consider useful.

Paper structure. The remainder of the paper is organized as
follows. After reviewing related work in Section 2, we describe the
proposed approach in Section 3. Section 4 discusses the details of
the empirical study carried out to answer our research questions,
and in Section 5 we present and analyze the results. In Section 6
we identify the threats that could affect the validity of our work
and conclude, outlining future research directions, in Section 7.

2See https://github.com/facebook/react/pull/12377
3See https://github.com/facebook/react/pull/12358

2 RELATEDWORK
2.1 Empirical Studies of Pull Requests
Gousios et al. [15, 16] investigated and analyzed the PbD model by
surveying GitHub developers, discussing the practices and chal-
lenges faced by both the integrators and contributors in the pull-
based development model. Their findings reveal that maintaining
PR quality and PR prioritization are the two main challenges faced
by the integrators in PbD [16]. Similarly, lack of integrator’s re-
sponsiveness is the main challenge faced by the contributors in
PbD [15]. Rahman et al. [29] provided a comparative study involv-
ing 78 GitHub projects, investigating successful and unsuccessful
pull requests, and found that age, maturity, and the number of
developers and their experience can affect the success and failure
rates of PRs. Zhang et al. [44] conducted an exploratory study of
@-mentions in PbD, demonstrating that @-mention is beneficial to
the processing of pull-requests. Liu et al. [21] conducted a larger
study on 461 GitHub projects, reporting that usage of PbD helps
to increase the social and development activities of projects, but it
leads to prolonged bug fixing time.

2.2 Reviewer/Integrator Recommendation
Jiang et al. [18], proposed to support PbD by recommending ap-
propriate reviewers for the PRs, discovering that the activeness is
the most important attribute in the reviewer recommendation. In a
similar direction, Thongtanunam et al. [33] proposed an accurate
(77.97%) reviewer recommendation algorithm based on file path
similarity, while Yu et al. [42] extended three typical approaches
used in bug triaging and code review for recommending reviewers
in PbD. Recently, Ying et al. [39] proposed a PR reviewer recom-
mendation approach (EARec) which considers developer expertise
and authority, which outperforms previous state-of-art methods.
Liao et al. [20] proposed a Topic-based Integrator Matching Al-
gorithm (TIMA) to predict highly relevant collaborators (the core
developers) as the integrator to incoming PRs.

2.3 Pull requests acceptance/merge/latency
prediction

Gousios et al. [14] conducted an exploratory study to identify the
features that influence the PRs decision to merge and the time
to process it: merge decisions mainly influenced by the specific
recently modified code, while time to merge is affected by the devel-
opers experience and project characteristics (e.g., size and openness
to external contributors). Tsay et al. [34] studied the social and tech-
nical factors behind the PR’s acceptance. Their results suggest that
highly discussed PRs are much less likely to be accepted and mature
projects are more conservative when evaluating PRs. Similarly, Yu
et al. [40, 43] explored the factors that affect PRs acceptance and
latency in the context of continuous integration using regression
modeling. Results show that latency is a complex issue and con-
tinuous integration is a dominant factor for PRs acceptance and
latency.

2.4 Pull Request Recommendation
van der Veen et al. [35] proposed a code review PRioritizer system
which uses a machine learningmodel to predict whether the current

https://github.com/facebook/react/pull/12377
https://github.com/facebook/react/pull/12358
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PR will receive user updates in the following time window. The
main limitation of the PRioritizer is that it uses daily user updates
but does not consider the acceptance probability of the PRs. Due
to this limitation, PRs that are not likely to be accepted but with
a high probability to be updated by users may receive a higher
priority compared to more useful PRs (i.e., the ones that would be
actually accepted). Hence, our approach mitigates this limitation of
PRioritizer by also considering the acceptance likelihood of each
PR, thus reducing the probability that the integrator(s) focus on
PRs having a low probability to be accepted. Our paper proposes
to support integrators/developers to make actions, considering the
actual PRs feedback. This idea was also explored in similar work,
concerning the actions to take, when considering user feedback
[26, 27, 32, 46].

3 CARTESIAN APPROACH
In this section, we introduce our machine learning-based PR recom-
mendation approach called CARTESIAN. Differently from previous
studies, CARTESIAN categorizes the PRs into three classes: accept,
respond, and reject.

3.1 Feature Extraction
Features extracted for this study are based on previous studies on
PRs [14, 43] and surveys conducted with GitHub developers [15, 16].
We extracted features from four aspects of a PR: Project, Contributor
(Author), Integrator, and Pull Request itself.

3.1.1 Project. We summarise the features related to the project of a
given PR in Table 1. Project age has been shown to be a statistically
significant predictor of PR acceptance [34, 43]. Furthermore, Tsay
et al. have shown that team size and project popularity (stars)
negatively influence the likelihood of a PR to be accepted: the more
popular the project is, the less easy it is for a contributor to influence
it by submitting a PR. We expect other popularity measures such
as the number of watchers and the number of forks to affect the
acceptance likelihood as well. Programming language and domain
of the project may also have an influence on the success and failure
of the PRs [29]. Finally, to understand the overall working rhythm
of the project we further include such measures as additions and
deletions of lines of code per week, the average merge latency of
the PRs in the project and the average number of commits per PR.

3.1.2 Pull request. The features, summarised in Table 2, charac-
terize the pull request information, e.g., its size or age. Gousios et
al. observed that integrators take into account the size of the PR
when evaluating the quality of the contribution [16]. Moreover,
churn-related metrics have been shown to be statistically signif-
icant predictors for PR acceptance [43]. PRs submitted from the
same branch may receive a quick response [35]. Time till the first re-
sponse is a statistically significant predictor for PR acceptance [43].
The PRs submission day may also affect its acceptance [31]. Finally,
it is plausible that the description of the PR (i.e., title and body)
may contain information influencing the integrators’ decision to
accept a PR or to respond to it. Therefore, the title and body text are
transformed into word embedding using Word2Vec, as explained
in Section 3.2.

Table 1: Features extracted from the Project dimension.

Feature Description

project_age The age of the project measured in months.
team_size The size of the project’s team
stars The numbers of stars of the project.
file_touched_average The average number of total files touched in every PR.
forks_count The number of forks of the project.
watchers The number of watchers of the project.
language The programming language in which the project is writ-

ten.
project_domain The domain of the project e.g. compiler, web framework,

etc.
contributor_num The number of contributors to the project.
comments_per_closed_PR Average comments on pull requests of the project.
additions_per_week The number of lines added per week to the project.
deletions_per_week The number of lines deleted per week from the project.
merge_latency The average time of the pull request in days from the open

state to merged state of the project
week_days The rate of lines changed in the project on each day of the

week. Each day has been used then as a feature.
churn_average The average number of lines added and deleted by the pull

requests.
close_latency The average time of pull request in days from the open

state to the close state of the project.
comments_per_merged_PR The average number of comments in merged pull re-

quests.
project_accept_rate The rate of merged pull requests of the project.
workload The number of open pull requests still open in the project

at the creation time of the examined PR.
commits_average The average number of commits per pull request.
open_issues The number of open issues

3.1.3 Author/Contributor. Status of the author in the community in
general, represented by the number of followers, and specifically in
the project, as reflected by the “contributor” status, have been shown
to be statistically significant for predicting PR acceptance [34].
Moreover, reviewers prefer contributors with high-profile having
a successful history [11, 16]. The success of the contributor is de-
scribed by features like previous PRs, contributions, and acceptance
rates [14]. Some projects assign priority to core member’s contri-
butions over external members. We have added some new features
which may complement the existing features including the con-
tributor’s number of public repositories, rate of closed PRs. The
complete list of features related to the developer authoring the PR
is given in Table 3.

3.1.4 Integrator. The integrators take into consideration the code
review while evaluating the quality of the PRs [16]. The number
of discussion comments and review comments has an impact on
the latency and acceptance of the PR [14]. Similarly, the number
of participants who take part in the discussion also has an impact
on the acceptance and latency of the PRs [14]. The at_mention
feature represents whether the last comment message contains any
reference to a developer. Previous studies show that ‘@’ mentions
are beneficial to the processing of PR by reducing the delay time
in the developer’s collaboration [44]. Table 4 shows the features
extracted from the integrator’s dimension.
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Table 2: Features extracted from the Pull Request dimen-
sion.

Feature Description

title The embedding of the title text.
body Embedding of the body text in the pull request.
intra_branch Are the source and target repositories the same?
mergeable_state Is this pull request in a mergeable state?
assignee_count The number of the assignee in the pull request.
label_count The number of labels given to the pull request.
files_changed The number of changed files in the pull request.
contain_fix_bug Does the pull request fix a bug?
wait_time The waiting time of the pull request.
day The current day of the pull request.
src_churn Number of lines added to or deleted from the pull

request.
commits_PR The total number of commits in a pull request.
is_responded Is the PR is responded by the integrator.
first_response_time It is the time duration inminutes from creation of

the PR till the first response from the integrator.
latency_after_response The time duration in minutes after the first re-

sponse till closing time of the PR.
PR_latency The pull request latency is the time inminutes be-

tween the creation and closing of a pull request.
title_word_count The number of words in the title of the examined

PR.
body_word_count The number of words in the body of the exam-

ined PR.
point_to_issueOrPR Does the pull request aim to solve an issue or like

other pull requests?

3.2 Generate Word Embedding
We extracted all the textual information from the PRs of the 19
projects, including ‘Title’, ‘Body’, and ‘Review-Comments’. Then
we eliminate the stop words[13] and apply stemming [28]. After
pre-processing the textual information, we used all the remaining
text for Word2Vec training to obtain the word embedding matrix
of the whole vocabulary in our text [22]

Word2Vec, a neural network-based model, generates low dimen-
sional word vectors, called “word embedding”, from a corpus that
can retain the semantics of the text [38]. In this study, we have
used a variation of Word2Vec called Skip-gram model since it is
more accurate in recent studies involving development tasks [38][6].
Since different text fields may have a different number of words,
we transformed the text into a single word vector by averaging all
the word vectors of all the words in the text. More formally, given
a text that contains n words, supposewi is the word vector of the
ith word in the text. A text embedding t is generated as follows:

t =

∑n
i=0wi

n

3.3 The Classification model
A system that recommends the right actions (accept, respond, or
reject) on PRs could be beneficial for the integrators. Especially
in situations where integrators have restricted time to review a
given number of PRs. Such recommendation of actions on PRs can
help them to schedule their review process accordingly. In case
the workload is higher, then the integrator can first focus on the

Table 3: Features extracted from the Contributor dimension

Feature Description

followers The number of followers of the contributor who
has submitted the pull request.

closed_num The number of closed pull requests of the contrib-
utor.

is_contributor A binary variable is True if the creator is a con-
tributor.

public_repos The number of public repositories of the contrib-
utor

is_core_member Is the creator, the core member of the project or-
ganization?

contributions The number of contributions to the current con-
tributor.

user_accept_rate The rate of the merged PRs of the contributor up
to the creation of the examined PR.

accept_num The total number of the merged PRs of the con-
tributor.

closed_num_rate The rate of the closed PRs of the contributor.
prev_PRs The number of the previous PRs created the con-

tributor.
following The number of GitHub users followed by the con-

tributor.

Table 4: Features extracted from the Integrator dimension

Feature Description

line_comments_count The number of line comments in the source code
of the examined PR.

comments_word_count The number of words in the review and discus-
sion comments.

participants_count The number of participants in the examined PR.
num_comments The number of reviews and discussion comments

on the examined PR.
at_mention Does the last comment of the PR contain ‘@’

mentions?

accept PRs recommended by the model, because such PRs could
be related to (i) minor bug fixes, (ii) new minor features, or (iii)
refactoring activities. In a quick go through the integrator can
accept the recommended PRs which can substantially reduce the
workload in less amount of time. The respond class models PRs that
are acceptance worthy but need discussion. Thus, indicating these
PRs to integrators can allow them to give timely responses to the
contributors so that high-quality PRs could be merged faster into
the master branch. Recommending the action reject on PRs, could
prevent the integrators from wasting time in reviewing low-quality
PRs which are less likely to be accepted.

CARTESIAN models the PR recommendation as a multi-class
problem. In particular, our approach identifies the likely right ac-
tions that integrators should undertake on each specific PRs. Seven
different classifiers, discussed in section 5.1, are trained on the
features discussed above, to select the best among them to build
CARTESIAN.

4 EXPERIMENTAL DESIGN
The main goal of this study is to assess the effectiveness of CARTE-
SIAN in identifying the right actions to take on PRs, as well as its
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Table 5: GitHub projects selected

Projects #PRs #Watchers #Stars #Contributors #Forks OPRs/day

Kubernetes (Go) 35672 2306 33873 1995 11639 529.36
Nixpkgs (Nix) 27792 133 2291 2210 2595 235.67
Cmssw (C++) 21089 76 527 1990 2389 135.54
Tensorflow (C++) 6729 7619 93054 1562 59180 125.48
Rails (Ruby) 20305 2623 3900 5 4464 15423 116.29
Rust (Rust) 24566 1231 27100 2348 4705 100.68
Symfony (PHP) 16255 1276 17009 2094 5986 82.66
Pandas (Python) 8272 810 13504 1311 5316 81.52
React (JavaScript) 6521 5611 90956 1254 16809 80.50
Salt (Python) 28598 598 8684 3089 3943 76.45
Scikit-Learn (Python) 5390 2059 26640 1202 13044 68.76
Yii2 (PHP) 5939 2059 26640 1202 13044 67.81
Cdnjs (JavaScript) 7281 246 6078 1576 3384 65.61
Terraform (Go) 7758 797 11448 1434 3659 65.38
Moby (Go) 18543 3322 48079 1950 13664 63.94
Django (Python) 9606 1951 32522 1844 13462 61.92
Opencv (C++) 7455 2001 23002 1154 16149 38.25
Angular.js (JavaScript) 7557 4369 58127 1808 28469 29.04
Laravel (PHP) 13090 1013 11283 2001 5197 13.47

usefulness when used to prioritize PRs. In this section, we present
all the steps that we followed to construct the dataset, the evalua-
tion metrics which have been used to evaluate the performance of
our approach, and the experiments conducted.

4.1 Study Subject
GitHub is the world’s largest open-source platform hosting open
source project repositories. We extracted data of 19 projects hosted
on GitHub, as reported in Table 5. We collected PR data from the
creation time of the projects until February 2018. We used the
REST API V3 interface provided by GitHub to crawl the data. The
following steps are followed to prepare the data.

4.1.1 Project selection. We have selected popular GitHub projects,
in terms of stars [5], which are still active and have a long history
on average 7 years. These projects are diverse as they are written
in different programming languages and they belong to different
domains including data science frameworks, web frameworks, oper-
ating systems, compiler, and others. Besides, to obtain high-quality
experimental data, we have used the following additional selection
strategy:

• Projects that are developed in strict accordance with the
process of the pull-based development model.

• Projects with more than 13 open pull requests per day. We
applied this filter to target projects having a large number
of open pull requests rate per day.

• Projects with more than 1000 contributors, to increase PRs
heterogeneity.

The selected projects along with their characteristics are reported
in Table 5.

4.2 Datasets Construction
Our dataset consists of 278,418 pull requests data extracted from
the 19 projects given in table 5. These PRs are extracted since the
projects are started until February 2018.We have divided the dataset
into train and test datasets as follows: PRs which are closed before
September 1, 2017, are used as the train data and PRs submitted
after September 1, 2017, till February 28, 2018, are used as the
test data. The rationale of this choice is to make have in training

and test set PR spanned in two different years. The distribution of
the three classes of PRs in our dataset is: accept (11.6%), respond
(60%), and reject (28.4%). The distribution shows that the dataset
is imbalanced.

Replication package: We make available in our replication
package4 the scripts and all the raw data used for this research.

4.3 Evaluation Measurements
To answer our RQ1 and evaluate the classification performance of
CARTESIAN we use the traditional information retrieval metrics:
precision, recall, F-measure and Accuracy. F-measure also called
the F_1 score is the harmonic mean of precision and recall.

F1 = 2 ∗
precision ∗ recall

precision + recall

Accuracy describes the proportion of correctly classified samples
out of total samples. The general formula for accuracy calculation
is given below:

Accuracy =
TP +TN

TP +TN + FP + FN

where TP = True Positive, TN = True Negative, FP = False Positive,
and FN = False Negative.

To answer our RQ2 and assess the prioritization effectiveness
we used the following metrics:

4.3.1 Mean Average Precision. Mean Average Precision (MAP) for
a set of queries is the mean of the average precision scores for
each query [1]. It is a measure that considers both positive and
negative cases and their sort order. The more positive cases that
are placed before the negative ones, the greater is the value of MAP.
It is computed as follows:

P(j) =

∑
k :π (k )⩽π (j) yk

π (j)

APi =

∑ni
j=1 P(j) ∗ yj∑ni

j=1 yj

MAP =

∑n
i=1APi

n
,

where yj indicates whether the jth element in the sorted order is a
positive example and π (k) is the sorting position.

4.3.2 Average Recall. Average Recall (AR) for a set of queries is
the mean of the Recall scores for each query. Recall refers to the
percentage of correct samples that have been retrieved to the total
number of correct samples. We used AR to measure the proportion
of positive samples in the top@N sample for all queries: Recall = k

j ,
where k is the number of positive samples in top@N, and j is the
total number of positive samples.

AR =

∑n
i=1 Recalli

n
,

where Recalli is the Recall of query i and n is the total number of
queries.

4https://github.com/Tools-Demo/cart_package

https://github.com/Tools-Demo/cart_package
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4.4 Experiments
4.4.1 Experiment I (RQ1). The aim of the experiment I is to eval-
uate the extent to which our approach can be used to predict the
action that integrators should take on PRs. Thus to pursue this goal
we have used different machine learning classifiers. Specifically, we
trained seven classifiers: Logistic Regression [36], SVM [25], Ran-
dom Forest [17], Decision Trees, Naive Bayes, K-Nearest Neighbor
and XGBoost [7] to recommend the right actions on PRs and the
model with highest f_1 score and accuracy is selected as the ulti-
mate model to develop CARTESIAN. We selected these classifiers as
they have been used in previous studies on PRs [14, 35, 41]. Hence,
all seven classifiers are trained using a 10-fold cross-validation strat-
egy. As the PRs are processed in a time frame, PRs that are already
closed cannot be predicted using PRs submitted after them (pre-
dicting past PRs). Therefore, we have sorted the PRs in the dataset
according to their closing time. Then the whole dataset is split into
11 equal folds e.g. fold1, fold2, ... fold11. Each model is trained on the
previous fold(s) and tested on the following fold. During iteration 1,
each model is trained on fold1 and tested on fold2. Similarly, during
iteration 2 each model is trained on fold1+fold2 and tested on fold3
and so on. The scores of the ten iterations are then averaged to get
the final results.

To select the best features among all the features in the training
dataset, we have used the importance score of each feature [12].
To get the final set of features, we trained and tested the model
by iteratively removing features by their importance, recording
the precision, recall, and accuracy along the way. The iteration is
stopped when the accuracy starts decreasing than the one achieved
with all the features.

4.4.2 Experiment II (RQ2). To assess how helpful is CARTESIAN
in prioritizing useful PRs, we performed two steps. Firstly, we com-
pared CARTESIAN with baseline models, the prioritizing criteria
studied by Gousios et al. [16]. Gousios et al. [16] surveyed 749 in-
tegrators and they concluded from their survey that integrators
prioritize the PRs based on their age and size. They further ex-
plained that the integrators prefer to treat PRs in first-in-first-out
priority. Similarly, PRs having fewer modifications in terms of line
of code added and/or deleted are given high priority. We have used
these two criteria as baselines and created two models, namely the
FIFO model and the Sized-Based Model (SBM). In the case of FIFO
model, the test sample is prioritized based on the creation date/time
of the PRs and then the MAP and AR are calculated, whereas in the
case of Sized-based model the test samples are prioritized based on
the size (i.e., number of lines added and deleted) of the PRs. On the
other hand, CARTESIAN sorts the PRs in the test sample according
to the identified classes, by moving (i) on top all the PRs classified
as accept, and (ii) soon after the PRs belonging to the respond
class.

To evaluate the prioritization performance we use Mean Aver-
age Precision (MAP) and Average Recall (AR) on the top@20 PRs
prioritized by each considered approach. In particular, for MAP and
AR computation, a PR is considered a positive sample if it has been
actually accepted and merged in the project (either directly or after
discussion), while it is a negative sample in case of rejection.

Secondly, we qualitatively analyzed the top@20 PRs, from each
subsample, recommended by CARTESIAN to investigate whether

they could be useful for the integrators. We have followed the
same procedure for coding and thematic analysis as performed by
Gousios et al. [14]. The first author examined 100 PRs (title and de-
scription of PRs) and identified their types. Another author then ex-
amined the next 100 PRs to validate the types of recommended PRs.
The two examined samples are merged after the cross-validation to
obtain the final samples.

5 RESULTS
In this section, we report and discuss the main results achieved in
our empirical study.

5.1 RQ1: To which extent is CARTESIAN able
to identify the actions that should be
undertaken by integrators on PRs?

The goal of this research question is to assess the performance of
the proposed approach in automatically recommending the actions
that should be taken on each PRs. To this aim, we compare the
results obtained by several machine learning (ML) algorithms, that
have proven to be useful in prior studies on PRs classification or
prioritization [14, 35, 41]. Table 6 reports the precision, recall, F_1
score, and accuracy achieved by the aforementioned ML algorithms
trained by using the features discussed in Section 3.1 and the 10-fold
cross-validation strategy. More specifically, for each considered ML
algorithm, we report the precision, recall, and F_1 score results
achieved in each class, along with the average values of those
metrics and the accuracy score. The ‘Class’ column represents the
three classes of PRs.

As shown in Table 6, XGBoost outperforms the other classi-
fiers in correctly identifying the actual actions on PRs, achieving
the highest values in all the considered metrics. Besides, XGBoost
achieves the highest values of precision, recall, and F1-score for
all the classes of the PRs. While the Random Forest classifier ob-
tains performance that is comparable to the one achieved through
the XGBoost technique, the other algorithms perform significantly
worse, with the Naive Bayes algorithm that achieves the worst
results. It is worth noticing that all the models can better identify
the PRs belonging to the accept category than the ones belonging
to the other classes. This could depend on the fact that our dataset
is unbalanced and the reason behind the success of XGBoost and
Random Forest models could be connected with the fact that both
of them are tree-based ensemble classifiers and can work well with
imbalanced data [8, 30].

With the aim of investigating the most important features in
the training dataset, we followed the procedure defined in [12]. In
particular, we exploited the feature’s importance as computed by
the XGBoost classifier, which provides the Gain of each feature.
The Gain associated with a specific feature represents the relative
contribution of the corresponding feature in the construction of
the boosted decision trees. More specifically, we ran the XGBoost
classifier 50 times on the training dataset, recording the feature’s
importance along the way. The average of Gain values obtained in
the 50 iterations is used as the final feature’s importance score. To
get the final set of relevant attributes, after ranking them according
to the importance scores, we trained and tested the model by itera-
tively removing features (starting from the least relevant ones) and
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Table 6: Results of the seven classifiers trained using 10-fold
cross-validation technique.

Model Class Precision Recall F_1 Score Accuracy

XGBoost

accept 0.87 0.93 0.90

0.86response 0.93 0.98 0.95
reject 0.81 0.66 0.72

Average 0.86 0.86 0.86

Random
Forest

accept 0.86 0.91 0.88

0.84
response 0.91 0.99 0.95
reject 0.75 0.63 0.68

Average 0.84 0.84 0.84

Decision
Tree

accept 0.80 0.95 0.87

0.81
response 0.90 0.98 0.94
reject 0.78 0.42 0.54

Average 0.81 0.81 0.79

Logistic
Regression

accept 0.82 0.82 0.82

0.76
response 0.72 0.90 0.74
reject 0.64 0.53 0.58

Average 0.77 0.76 0.75

SVM

accept 0.76 0.84 0.79

0.70
response 0.25 0.15 0.13
reject 0.57 0.56 0.56

Average 0.66 0.70 0.67

K-Nearest
Neighbor

accept 0.73 0.70 0.71

0.63
response 0.48 0.47 0.46
reject 0.48 0.52 0.50

Average 0.64 0.63 0.63

Naive
Bayes

accept 0.71 0.72 0.71

0.60
response 0.36 0.91 0.51
reject 0.60 0.20 0.30

Average 0.65 0.60 0.58

recording the precision, recall, and accuracy along the way. After
removing 39 less important attributes, we observed that by only
considering 31 features we were able to achieve the same results
like the ones reported in Table 6. The final list of selected features
along with their average Gain value is given in Figure 1.

As highlighted by the feature selection process, num_comments
(i.e., the number of review and discussion comments), is_contributor
(i.e., the role of the PR submitter), and participants_count (i.e.,
the number of participants in the discussion) are the most rele-
vant features for identifying the actions that should be undertaken
on PRs. Therefore, looking at Figure 1, we can conclude that the
classification is largely driven by features in the Contributor and
Integrator dimensions.

RQ1 Summary: CARTESIAN can automatically recommend
the actions to undertake on PRs with average precision, recall,
f_1-score, and accuracy of 86%, using XGBoost as the under-
lying machine learning algorithm. The classification accuracy
is largely driven by features in the Contributor and Integrator
dimensions.

5.2 RQ2: To which extent can our approach be
used to prioritize useful PRs?

To investigate the usefulness of our approach when adopted in a
practical context, we evaluate the performance achieved by CARTE-
SIAN when used to prioritize PRs. In particular, we compare the

Figure 1: Features selected as a result of feature selectionpro-
cess.

performance ofCARTESIAN with two baseline models; first-in-first-
out (FIFO), which prioritizes PRs depending on the submission date,
and Sized-Based Model (SBM), which rewards PRs having a smaller
size (number of lines added and deleted). To this aim, a statistically
significant sample of 380 PRs extracted from our dataset has been
used for comparison purposes. This sampling was necessary to have
an equal proportion of PRs from each class. Then, the test sample
has been shuffled and divided into 10 equal subsamples (sample_0,
sample_2..., sample_9), where each subsample contains 38 PRs. The
proportion of PRs from each class in the subsamples is random, to
better reflect real situations. Each subsample has been provided to
CARTESIAN to predict the action for each PR and then the PRs in
each sub sample are prioritized according to the predicted actions,
as detailed in Section 4.4.2. Similarly, PRs in each subsample are
prioritized using the baseline models. MAP and AR for top@20 PRs
have been computed for all three models and the results are shown
in Figure 2. CARTESIAN outperforms the baseline models in both
MAP and AR. We used the Mann-Whitney pairwise test (with the
p-value adjusted using the Benjamini & Yekutieli [3] method), to
check if the differences in the MAP and AR results are statistically
significant, and effect size measure to quantitatively characterize
the eventual differences. Results of the aforementioned test show
that CARTESIAN is better in prioritizing the most likely to be ac-
cepted PRs than the FIFO baseline model with statistical evidence
(MAP: p = 0.0005, AR: p = 0.0058) and large effect size ( δ = 0.9).
Similarly, the performance of CARTESIAN is significantly better
than the SBM baseline model (MAP: p = 0.0005, AR: p = 0.0058)
with large effect size ( δ = 0.9).

To qualitatively corroborate the quantitative results obtained,
we also analyze the results produced by all the approaches and
try to investigate the motivations behind the higher performance
achieved by CARTESIAN. To this purpose, we inspected the top@20
PRs from the sample_0 and sample_5 prioritized by the threemodels
as shown in Table 7. The ‘Rank’ column represents the rank given
to each PR by the models and the ‘Label’ column represents the
actual action undertaken on the PRs. Looking at Table 7 we can
observe that in both the samples CARTESIAN has prioritized PRs
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Figure 2: Top@20 MAP and AR achieved by CARTESIAN and baseline approaches.

that are most likely to be accepted and/or replied. In contrast the
prioritization made by the baseline models can reward PRs that
are likely to be rejected, and this could result in a waste of the
integrators’ time and efforts.

To gain further insights into our results and better understand the
kinds of PRs that are rewarded by CARTESIAN, we also manually
examined the top@20 PRs prioritized by our approach in each of
the aforementioned samples (sample_0,..., sample_9). As prior work
[16] showed that integrators give high priority to PRs that either
fixes a bug or add new features, our aim was to understand whether
CARTESIAN can prioritize those kinds of PRs. As reported in Table
8, most frequent types of PRs prioritized by our approach are bug
fixes (24%) and new features (17%) which indicates that CARTESIAN
is a valid support for giving high priority to PRs that integrators
consider useful. Only 12.5% of the recommended PRs are Doc PRs,
which are considered less important [45].

RQ2 Summary: CARTESIAN can significantly outperform
FIFO and SBM baseline approaches in prioritizing PRs that are
worthy to be either directly accepted or accepted after discussion.
Moreover, the qualitative analysis results show that CARTESIAN
is a valid support for giving high priority to PRs that integrators
consider useful.

6 THREATS TO VALIDITY
Threats to construct validity. To designCARTESIAN, we used a set of
features that may only partially model all the relevant aspects that
integrators take into account when prioritizing PRs, as there may
be further factors to which integrators actually pay attention that
we not considered. To mitigate this issue, all the features considered
in our work have been selected considering previous studies [14,
15, 35], which demonstrated the importance of such factors and
their relevance to PRs prioritization.

Threats to internal validity. To construct our dataset, we collected
PRs having the closed status assigned. However, some of the not-
accepted or not-responded pull requests that we considered in our
dataset could be eventually reopened in the future [24] and accepted
after reconsideration. To partially alleviate this concern, we avoided
collecting PRs that have been recently closed, considering PRs that
are still closed after more than a year, this to reduce the probability
of the PRs to be reconsidered. Moreover, to identify accepted PRs
in our dataset, we rely on the GitHub’s Merged attribute and some
of the PRs may appear as non-merged even if they are actually
merged [19], To mitigate this concern, we selected projects for
which the percentage of merged pull requests with respect to the
number of closed pull requests seems reasonable. Moreover, we
manually checked whether the majority of the PRs in the selected
projects are merged through GitHub’s pull request merge facilities.

Threats to conclusion validity. To answer our RQ1, we (i) com-
pared the classification performance obtained by different machine
learning algorithms, by evaluating widely-used metrics in the in-
formation retrieval field, and (ii) followed a well-defined procedure
to evaluate the importance of features for performing PRs classi-
fication. Also, to measure the effectiveness of CARTESIAN when
adopted for prioritizing PRs (RQ2), we compared the Mean Average
Precision and Average Recall values achieved by CARTESIAN and
two baselines approaches on top-ranked PRs. For demonstrating
that CARTESIAN outperforms baseline models with statistical ev-
idence, we used appropriate statistical procedures and effect size
measures. Besides, we manually inspected the PRs prioritized by
our approach to gain qualitative insights into the types of PRs that
CARTESIAN is able to reward.

Threats to external validity. The main threat to external validity
could be related to the specificity of our dataset in which we col-
lected PRs from a subset of projects fromGithub. Such projects could
not be adequately representative of all the open-source projects
adopting pull-based development processes. To address this issue,
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Table 7: Top 20 PRs from two random samples prioritized by
the three models.

Sample Zero

Rank CARTESIAN FIFO SBM
PR_ID Label PR_ID Label PR_ID Label

1 react-12154 accept scikit-learn-9686 respond tensorflow-12885 reject
2 nixpkgs-30865 accept nixpkgs-28991 respond cmssw-20468 respond
3 nixpkgs-33594 accept tensorflow-12885 reject opencv-9957 reject
4 nixpkgs-31286 accept salt-43438 accept framework-21236 accept
5 symfony-24156 accept cmssw-20468 respond nixpkgs-28991 respond
6 nixpkgs-30733 accept rust-44639 respond symfony-25249 reject
7 nixpkgs-28933 accept framework-21236 accept framework-23320 accept
8 tensorflow-16637 accept rust-44836 reject nixpkgs-35821 reject
9 salt-46136 accept django-9141 accept nixpkgs-30974 accept
10 framework-20979 accept nixpkgs-29892 reject nixpkgs-34920 reject
11 nixpkgs-29438 accept kubernetes-53753 respond rust-44639 respond
12 salt-45419 respond rails-30868 accept kubernetes-53753 respond
13 pandas-18177 respond moby-35220 accept kubernetes-58934 reject
14 opencv-10697 respond tensorflow-13877 reject nixpkgs-33259 accept
15 pandas-18620 reject nixpkgs-30696 accept nixpkgs-29892 reject
16 nixpkgs-29309 respond opencv-9957 reject nixpkgs-35459 respond
17 nixpkgs-32471 reject nixpkgs-30974 accept nixpkgs-33658 respond
18 cmssw-21910 respond rust-45776 reject rust-44836 reject
19 tensorflow-15081 respond kubernetes-56659 reject kubernetes-57087 respond
20 rust-45853 respond symfony-25249 reject django-9141 accept

Sample Five

Rank CARTESIAN FIFO SBM
PR_ID Label PR_ID Label PR_ID Label

1 react-12075 accept nixpkgs-28861 reject cdnjs-11977 reject
2 nixpkgs-33452 accept cmssw-20350 reject nixpkgs-33423 respond
3 opencv-10738 accept nixpkgs-29120 respond framework-22673 accept
4 framework-21982 accept salt-43434 accept pandas-18990 accept
5 framework-21718 accept nixpkgs-29486 respond nixpkgs-35503 accept
6 nixpkgs-35503 accept kubernetes-53229 respond nixpkgs-33452 accept
7 framework-22716 accept kubernetes-53389 respond tensorflow-16570 respond
8 nixpkgs-31005 accept kubernetes-53472 reject salt-46203 accept
9 framework-22673 accept cdnjs-11977 reject kubernetes-60252 reject
10 salt-46203 accept framework-21718 accept opencv-10738 accept
11 salt-45260 accept nixpkgs-30963 reject framework-21982 accept
12 pandas-18990 accept nixpkgs-31005 accept framework-21718 accept
13 salt-43434 accept pandas-18102 reject kubernetes-57403 respond
14 kubernetes-53389 respond framework-21982 accept kubernetes-53229 respond
15 cmssw-22353 reject nixpkgs-31488 respond nixpkgs-32742 respond
16 kubernetes-53229 respond kubernetes-55730 respond tensorflow-17026 reject
17 nixpkgs-32069 reject django-9361 reject nixpkgs-31005 accept
18 nixpkgs-33088 respond pandas-18420 respond tensorflow-15597 reject
19 nixpkgs-29486 respond nixpkgs-32069 reject cmssw-22353 reject
20 tensorflow-16570 respond nixpkgs-32742 respond salt-45260 accept

such projects were selected considering well-defined selection cri-
teria (see Section 4.1.1). In addition, with the aim of increasing the
heterogeneity of data, we selected projects having (i) different na-
tures, (ii) developed by different developers’ communities, and (iii)
implemented through different programming languages. Finally,
our results are based on projects developed on GitHub, thus it is
unclear whether they can be generalized to further platforms for
open-source software development. For this reason, in the future,
we plan to evaluate our approach on further projects mined from
different platforms.

7 CONCLUSION
In this study, we proposed CARTESIAN, an automated approach to
help integrators selecting useful PRs when the pull-based software
development process is adopted. In particular, our approach is able
to automatically recommend the actions (i.e., accept, respond,
reject) that integrators should undertake on each specific PRs. We
evaluated (i) the performance achieved by CARTESIAN in identi-
fying such PR actions on a dataset containing more than 270,000
pull-requests extracted from 19 different projects, as well as (ii) the
effectiveness of our approach when used to prioritize PRs. Results

Table 8: Types of pull requests prioritized by CARTESIAN
in top@20.

Type of PR Short Description %

Bug fix PRs that fix bug or bugs 24
New feature PRs that add new features to the project. 17
Version update PRs which updates an existing package

to a new version or update builds.
16.5

Refactoring PRs the refactor the existing code es-
pecially removing unused code snip-
pets, duplicated code, renaming meth-
ods, and update the code to make it
more human-readable.

13.5

Doc PRs PRs which update the documents of the
project.

12.5

Tests PRs which either add a new test for an
existing method/class, fix or update ex-
isting unit tests.

4.5

Other These are the PRs which could not be
classified due to lack of information

12

of our study show that (i) CARTESIAN can identify PR actions with
an average precision and recall of about 86%, and (ii) CARTESIAN
can better prioritize the PRs that will be actually either directly ac-
cepted or accepted after discussion than both FIFO and Size-based
approaches. A qualitative analysis of the PRs prioritized by our
approach, allowed us to observe that many of those PRs are useful
for integrators, as they are related to either bug fixes or implemen-
tations of new features.

Future studies will be aimed at investigating further aspects that
can be related to the PRs recommendation. Specifically, our aim
is to integrate our PRs recommendation approach into platforms
supporting pull-based development (e.g. GitHub, Bitbucket, etc.),
in order to (i) further evaluate the usefulness of CARTESIAN, and
(ii) discover additional factors that can be used to improve the
recommendation performed by our approach.
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