280 research outputs found
A Search for leptophilic Z_(l) boson at future linear colliders
We study the possible dynamics associated with leptonic charge in future
linear colliders. Leptophilic massive vector boson, Z_(l), have been
investigated through the process e^(+)e^(-) -> mu^(+)mu^(-). We have shown that
ILC and CLIC will give opportunity to observe Z_(l) with masses up to the
center of mass energy if the corresponding coupling constant g_(l) exceeds
10^(-3).Comment: 12 pages, 10 figure
Model-Independent Searches for New Quarks at the LHC
New vector-like quarks can have sizable couplings to first generation quarks
without conflicting with current experimental constraints. The coupling with
valence quarks and unique kinematics make single production the optimal
discovery process. We perform a model-independent analysis of the discovery
reach at the Large Hadron Collider for new vector-like quarks considering
single production and subsequent decays via electroweak interactions. An early
LHC run with 7 TeV center of mass energy and 1 fb-1 of integrated luminosity
can probe heavy quark masses up to 1 TeV and can be competitive with the
Tevatron reach of 10 fb-1. The LHC with 14 TeV center of mass energy and 100
fb-1 of integrated luminosity can probe heavy quark masses up to 3.7 TeV for
order one couplings.Comment: 37 pages, 11 figures, 7 table
Neutrino masses from new generations
We reconsider the possibility that Majorana masses for the three known
neutrinos are generated radiatively by the presence of a fourth generation and
one right-handed neutrino with Yukawa couplings and a Majorana mass term. We
find that the observed light neutrino mass hierarchy is not compatible with low
energy universality bounds in this minimal scenario, but all present data can
be accommodated with five generations and two right-handed neutrinos. Within
this framework, we explore the parameter space regions which are currently
allowed and could lead to observable effects in neutrinoless double beta decay,
conversion in nuclei and experiments. We
also discuss the detection prospects at LHC.Comment: 28 pages, 4 figures. Version to be published. Some typos corrected.
Improved figures 3 and
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
Predictors of glycemic control among patients with Type 2 diabetes: A longitudinal study
BACKGROUND: Diabetes is the sixth leading cause of death and results in significant morbidity. The purpose of this study is to determine what demographic, health status, treatment, access/quality of care, and behavioral factors are associated with poor glycemic control in a Type 2 diabetic, low-income, minority, San Diego population. METHODS: Longitudinal observational data was collected on patients with Type 2 diabetes from Project Dulce, a program in San Diego County designed to care for an underserved diabetic population. The study sample included 573 patients with a racial/ethnic mix of 53% Hispanic, 7% black, 18% Asian, 20% white, and 2% other. We utilized mixed effects models to determine the factors associated with poor glycemic control using hemoglobin A1C (A1C) as the outcome of interest. A multi-step model building process was used resulting in a final parsimonious model with main effects and interaction terms. RESULTS: Patients had a mean age of 55 years, 69% were female, the mean duration of diabetes was 7.1 years, 31% were treated with insulin, and 57% were obese. American Diabetes Association (ADA) recommendations for blood pressure and total cholesterol were met by 71% and 68%, respectively. Results of the mixed effects model showed that patients who were uninsured, had diabetes for a longer period of time, used insulin or multiple oral agents, or had high cholesterol had higher A1C values over time indicating poorer glycemic control. The younger subjects also had poorer control. CONCLUSION: This study provides factors that predict glycemic control in a specific low-income, multiethnic, Type 2 diabetic population. With this information, subgroups with high risk of disease morbidity were identified. Barriers that prevent these patients from meeting their goals must be explored to improve health outcomes
Closing in on a perturbative fourth generation
A perturbative new family of fermions is now severely constrained, though not
excluded yet. We reconsider the current bounds (i.e., direct and from Higgs
searches, R_b, oblique parameters) on the fourth generation parameter space
assuming the case of a small CKM mixing with the third generation. We identify
viable scenarios featuring either a light or a heavy Higgs boson. A set of
representative benchmark points targeted for LHC searches is proposed with a
normal (inverted) quark mass hierarchy where t' -> b'W (b' -> tW) decays are
sizable. In the case where the fourth generation couplings to the lighter quark
families are small, we suggest that search strategies at the LHC should include
both pair (strong) and single (weak) production with bb+nW (n=2,...,6) final
state signatures.Comment: 23 pages, 6 figures, v2: some issues clarified and references added.
To appear in JHE
Search for Dark Matter Annihilation in the Galactic Center with IceCube-79
The Milky Way is expected to be embedded in a halo of dark matter particles,
with the highest density in the central region, and decreasing density with the
halo-centric radius. Dark matter might be indirectly detectable at Earth
through a flux of stable particles generated in dark matter annihilations and
peaked in the direction of the Galactic Center. We present a search for an
excess flux of muon (anti-) neutrinos from dark matter annihilation in the
Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at
the South Pole. There, the Galactic Center is always seen above the horizon.
Thus, new and dedicated veto techniques against atmospheric muons are required
to make the southern hemisphere accessible for IceCube. We used 319.7 live-days
of data from IceCube operating in its 79-string configuration during 2010 and
2011. No neutrino excess was found and the final result is compatible with the
background. We present upper limits on the self-annihilation cross-section,
\left, for WIMP masses ranging from 30 GeV up to
10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo
profiles, reaching down to cm s, and
cm s for the
channel, respectively.Comment: 14 pages, 9 figures, Submitted to EPJ-C, added references, extended
limit overvie
Development of a clinical decision model for thyroid nodules
<p>Abstract</p> <p>Background</p> <p>Thyroid nodules represent a common problem brought to medical attention. Four to seven percent of the United States adult population (10â18 million people) has a palpable thyroid nodule, however the majority (>95%) of thyroid nodules are benign. While, fine needle aspiration remains the most cost effective and accurate diagnostic tool for thyroid nodules in current practice, over 20% of patients undergoing FNA of a thyroid nodule have indeterminate cytology (follicular neoplasm) with associated malignancy risk prevalence of 20â30%. These patients require thyroid lobectomy/isthmusectomy purely for the purpose of attaining a definitive diagnosis. Given that the majority (70â80%) of these patients have benign surgical pathology, thyroidectomy in these patients is conducted principally with diagnostic intent. Clinical models predictive of malignancy risk are needed to support treatment decisions in patients with thyroid nodules in order to reduce morbidity associated with unnecessary diagnostic surgery.</p> <p>Methods</p> <p>Data were analyzed from a completed prospective cohort trial conducted over a 4-year period involving 216 patients with thyroid nodules undergoing ultrasound (US), electrical impedance scanning (EIS) and fine needle aspiration cytology (FNA) prior to thyroidectomy. A Bayesian model was designed to predict malignancy in thyroid nodules based on multivariate dependence relationships between independent covariates. Ten-fold cross-validation was performed to estimate classifier error wherein the data set was randomized into ten separate and unique train and test sets consisting of a training set (90% of records) and a test set (10% of records). A receiver-operating-characteristics (ROC) curve of these predictions and area under the curve (AUC) were calculated to determine model robustness for predicting malignancy in thyroid nodules.</p> <p>Results</p> <p>Thyroid nodule size, FNA cytology, US and EIS characteristics were highly predictive of malignancy. Cross validation of the model created with Bayesian Network Analysis effectively predicted malignancy [AUC = 0.88 (95%CI: 0.82â0.94)] in thyroid nodules. The positive and negative predictive values of the model are 83% (95%CI: 76%â91%) and 79% (95%CI: 72%â86%), respectively.</p> <p>Conclusion</p> <p>An integrated predictive decision model using Bayesian inference incorporating readily obtainable thyroid nodule measures is clinically relevant, as it effectively predicts malignancy in thyroid nodules. This model warrants further validation testing in prospective clinical trials.</p
- âŠ