938 research outputs found

    Writing across curriculum: Evaluating a faculty-centered approach

    Get PDF
    This paper discusses research on a pilot study for implementing a Writing Across the Curriculum (WAC) program in the College of Business (CoB) at a California Public University. Data analysis focused on faculty and writing assistant satisfaction using interviews, and on student learning as measured by evaluation of progressive writing assignments. Discussion includes: 1) assumptions on which the pilot was based and its goals, 2) overview of how the program was structured and implemented, 3) outcomes of the pilot program, and 4) recommendations for future programs. Results suggest both faculty and student participants were satisfied with the pilot program implementation and student writing improvement

    Ecological Impact Of Historical Land‐Use Patterns In The Great Plains: A Methodological Assessment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117101/1/eap20051561915.pd

    The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation

    Get PDF
    Anthropogenic aerosol effects on climate produce one of the largest uncertainties in estimates of radiative forcing of past and future climate change. Much of this uncertainty arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional general circulation models (GCMs). In this study, we develop a multi-scale aerosol-climate model that treats aerosols and clouds across different scales, and evaluate the model performance, with a focus on aerosol treatment. This new model is an extension of a multi-scale modeling framework (MMF) model that embeds a cloud-resolving model (CRM) within each grid column of a GCM. In this extension, the effects of clouds on aerosols are treated by using an explicit-cloud parameterized-pollutant (ECPP) approach that links aerosol and chemical processes on the large-scale grid with statistics of cloud properties and processes resolved by the CRM. A two-moment cloud microphysics scheme replaces the simple bulk microphysics scheme in the CRM, and a modal aerosol treatment is included in the GCM. With these extensions, this multi-scale aerosol-climate model allows the explicit simulation of aerosol and chemical processes in both stratiform and convective clouds on a global scale. <br><br> Simulated aerosol budgets in this new model are in the ranges of other model studies. Simulated gas and aerosol concentrations are in reasonable agreement with observations (within a factor of 2 in most cases), although the model underestimates black carbon concentrations at the surface by a factor of 2–4. Simulated aerosol size distributions are in reasonable agreement with observations in the marine boundary layer and in the free troposphere, while the model underestimates the accumulation mode number concentrations near the surface, and overestimates the accumulation mode number concentrations in the middle and upper free troposphere by a factor of about 2. The overestimation of accumulation model number concentrations in the middle and upper free troposphere is consistent with large aerosol mass fraction above 5 km in the MMF model compared with other models. Simulated cloud condensation nuclei (CCN) concentrations are within the observational variations. Simulated aerosol optical depths (AOD) are in reasonable agreement with observations (within a factor of 2), and the spatial distribution of AOD is consistent with observations, while the model underestimates AOD over regions with strong fossil fuel and biomass burning emissions. Overall, this multi-scale aerosol-climate model simulates aerosol fields as well as conventional aerosol models

    Analysis and quantification of the diversities of aerosol life cycles within AeroCom

    Get PDF
    Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO_4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO_4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO_4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO_4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by S_O4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO_4 and SS. It is the dominant sink for SO_4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and turbulent dry Deposition. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for a given species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO_4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times

    An AeroCom initial assessment – optical properties in aerosol component modules of global models

    Get PDF
    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds)

    Women's experiences of maternity service reconfiguration during the COVID-19 pandemic: A qualitative investigation

    Get PDF
    Objective: To explore women's experiences of maternity service reconfiguration during the first wave of the SARS-CoV-2 (COVID-19) pandemic. Design: Qualitative interview study. Setting: South London, United Kingdom. Participants: Women (N=23) who gave birth between March and August 2020 in one of the ten South London maternity hospitals. Methods: Semi-structured interviews were conducted (N=23), via video-conferencing software. Transcribed interviews were analysed ‘by hand’ using Microsoft Word. Template analysis was selected to code, analyse, and interpret data, according to the findings of a recently-published national survey of maternity service reconfiguration across the UK in response to COVID-19. Findings: Three main themes emerged through analysis: (i) Disruption to In-Person Care and Increased Virtual Care Provision, (ii) Changes to Labour and Birth Preferences and Plans, (iii) Advice for Navigating Maternity Services During a Pandemic. Key Conclusions: Women reported mixed views on the reduction in scheduled in-person appointments. The increase in remote care, especially via telephone, was not well endorsed by women. Furthermore, women reported an under-reliance on healthcare professionals for support, rather turning to family. Implications for Practice: We provide insight into the experiences of women who received antenatal, intrapartum, and postnatal care during the first wave of the COVID-19 pandemic. Our findings should inform healthcare policy to build back better maternity care services after the pandemic

    Barriers to identifying eating disorders in pregnancy and in the postnatal period: a qualitative approach.

    Get PDF
    BACKGROUND: Eating Disorders (ED) are mental health disorders that typically effect women of childbearing age and are associated with adverse maternal and infant outcomes. UK healthcare guidance recommends routine enquiry for current and past mental illness in antenatal and postnatal care for all women, and that pregnant women with a known ED are offered enhanced monitoring and support. Midwives and health visitors are ideally placed to identify and support women with ED as they are often the primary point of contact during the antenatal and postnatal periods. However, research on the barriers to identifying ED in the perinatal period is limited. This study aimed to understand the barriers to disclosure and identification of ED in pregnancy and postnatally as perceived by women with past or current ED, and midwives and health visitors working in the UK National Health Service. METHODS: Two studies were undertaken: mixed-measures survey of pregnant and postnatal women with current or past ED; focus groups with student and qualified midwives and health visitors. RESULTS: Five themes emerged on the barriers to disclosure in pregnancy as perceived by women: stigma, lack of opportunity, preference for self-management, current ED symptomatology and illness awareness. Four themes were identified on the barriers to identification of ED in pregnancy and in the postnatal period as perceived by health professionals: system constraints, recognition of role, personal attitudes, and stigma and taboo. CONCLUSIONS: Several barriers to the identification of ED during and after pregnancy were described, the main factors were stigma and poor professional training. Perinatal mental health is becoming increasingly prioritised within national policy initiatives; however, ED continue to be neglected and increased awareness is needed. Similarly, clinical guidance aimed at responding to the rising prevalence of obesity focus on changing nutrition but not on assessing for the presence of ED behaviours that might be affecting nutrition. Improving education and training for health professionals may contribute to reducing stigma and increase confidence in identifying ED. The barriers identified in this research need to be addressed if recognition and response to women with ED during the perinatal period is to improve

    Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound.

    Get PDF
    PURPOSE: Not all patients with metastatic castration-resistant prostate cancer (mCRPC) have sufficient tumor tissue available for multigene molecular testing. Furthermore, samples may fail because of difficulties within the testing procedure. Optimization of screening techniques may reduce failure rates; however, a need remains for additional testing methods to detect cancers with alterations in homologous recombination repair genes. We evaluated the utility of plasma-derived circulating tumor DNA (ctDNA) in identifying deleterious BRCA1, BRCA2 (BRCA), and ATM alterations in screened patients with mCRPC from the phase III PROfound study. EXPERIMENTAL DESIGN: Tumor tissue samples were sequenced prospectively at Foundation Medicine, Inc. (FMI) using an investigational next-generation sequencing (NGS) assay based on FoundationOneÂźLiquid to inform trial eligibility. Matched ctDNA samples were retrospectively sequenced at FMI, using an investigational assay based on FoundationOneÂźLiquid CDx. RESULTS: 81% (503/619) of ctDNA samples yielded an NGS result, of which 491 had a tumor tissue result. BRCA and ATM status in tissue compared with ctDNA showed 81% positive percentage agreement and 92% negative percentage agreement, using tissue as reference. At variant-subtype level, using tissue as reference, concordance was high for nonsense (93%), splice (87%), and frameshift (86%) alterations but lower for large rearrangements (63%) and homozygous deletions (27%), with low ctDNA fraction being a limiting factor. CONCLUSIONS: We demonstrate that ctDNA can greatly complement tissue testing in identifying patients with mCRPC and BRCA or ATM alterations who are potentially suitable for receiving targeted PARP inhibitor treatments, particularly patients with no or insufficient tissue for genomic analyses
    • 

    corecore