105 research outputs found

    Sentinel lymph node biopsy for breast cancer using methylene blue dye manifests a short learning curve among experienced surgeons: a prospective tabular cumulative sum (CUSUM) analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The benefits of sentinel lymph node biopsy (SLNB) for breast cancer patients with histologically negative axillary nodes, in whom axillary lymph node dissection (ALND) is thereby avoided, are now established. Low false negative rate, certainly with blue dye technique, mostly reflects the established high inherent accuracy of SLNB and low axillary nodal metastatic load (subject to patient selection). SLN identification rate is influenced by volume, injection site and choice of mapping agent, axillary nodal metastatic load, SLN location and skill at axillary dissection. Being more subject to technical failure, SLN identification seems to be a more reasonable variable for learning curve assessment than false negative rate.</p> <p>Methylene blue is as good an SLN mapping agent as Isosulfan blue and is much cheaper. Addition of radio-colloid mapping to blue dye does not achieve a sufficiently higher identification rate to justify the cost. Methylene blue is therefore the agent of choice for SLN mapping in developing countries.</p> <p>The American Society of Breast Surgeons recommends that, for competence, surgeons should perform 20 SLNB but admits that the learning curve with a standardized technique may be "much shorter". One appropriate remedy for this dilemma is to plot individual learning curves.</p> <p>Methods</p> <p>Using methylene blue dye, experienced breast surgeons performed SLNB in selected patients with breast cancer (primary tumor < 5 cm and clinically negative ipsilateral axilla). Intraoperative assessment and completion ALND were performed for standardization on the first 13 of 24 cases. SLN identification was plotted for each surgeon on a tabular cumulative sum (CUSUM) chart with sequential probability ratio test (SPRT) limits based on a target identification rate of 85%.</p> <p>Results</p> <p>The CUSUM plot crossed the SPRT limit line after 8 consecutive, positively identified SLN, signaling achievement of an acceptable level of competence.</p> <p>Conclusion</p> <p>Tabular CUSUM charting, based on a justified choice of parameters, indicates that the learning curve for SLNB using methylene blue dye is completed after 8 consecutive, positively identified SLN. CUSUM charting may be used to plot individual learning curves for trainee surgeons by applying a proxy parameter for failure in the presence of a mentor (such as failed SLN identification within 15 minutes).</p

    Emergency open cholecystectomy is associated with markedly lower incidence of postoperative nausea and vomiting (PONV) than elective open cholecystectomy: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During a previous study to define and compare incidence risks of postoperative nausea and vomiting (PONV) for elective laparoscopic and open cholecystectomy at two hospitals in Jamaica, secondary analysis comparing PONV risk in elective open cholecystectomy to that after emergency open cholecystectomy suggested that it was markedly reduced in the latter group. The decision was made to collect data on an adequate sample of emergency open cholecystectomy cases and further explore this unexpected finding in a separate study.</p> <p>Methods</p> <p>Data were collected for 91 emergency open cholecystomy cases identified at the two paricipating hospitals from May 2007 retrograde, as was done for the 175 elective open cholecystectomy cases (from the aforementioned study) with which the emergency cases were to be compared. Variables selected for extraction and statistical analysis included all those known, suspected and plausibly associated with the risk of PONV and with urgency of surgery.</p> <p>Results</p> <p>Emergency open cholecystectomy was associated with a markedly reduced incidence risk of PONV compared to elective open cholecystectomy (6.6% versus 28.6%, P < 0.001). The suppressive effect of emergency increased after adjustment for confounders in a multivariable logistic regression model (odds ratio 0.103, P < 0.001). This finding also identifies, by extrapolation, an association between reduced risk of PONV and preoperative nausea and vomiting, which occurred in 80.2% of emergency cases in the 72 hour period preceding surgery.</p> <p>Conclusions</p> <p>The incidence risk of postoperative nausea and vomiting is markedly decreased after emergency open cholecystectomy compared to elective open cholecystectomy. The study, by extrapolation, also identifies a paradoxical association between pre-operative nausea and vomiting, observed in 80.2% of emergency cases, and suppression of PONV. This association, if confirmed in prospective cohort studies, may have implications for PONV prophylaxis if it can be exploited at a sub-clinical level.</p

    Short-term, high-fat diet accelerates disuse atrophy and protein degradation in a muscle-specific manner in mice

    Get PDF
    Background: A short-term high-fat diet impairs mitochondrial function and the ability of skeletal muscle to respond to growth stimuli, but it is unknown whether such a diet alters the ability to respond to atrophy signals. The purpose of this study was to determine whether rapid weigh gain induced by a high-fat (HF) diet accelerates denervation-induced muscle atrophy. Methods: Adult, male mice (C57BL/6) were fed a control or HF (60 % calories as fat) diet for 3 weeks (3wHF). Sciatic nerve was sectioned unilaterally for the final 5 or 14 days of the diet. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated in vitro to determine rates of protein degradation and subsequently homogenized for determination of protein levels of LC3, ubiquitination, myosin heavy chain (MHC) distribution, and mitochondrial subunits. Results: When mice were fed the 3wHF diet, whole-body fat mass more than doubled, but basal (innervated) muscle weights, rates of protein degradation, LC3 content, mitochondrial protein content, and myosin isoform distribution were not significantly different than with the control diet in either soleus or EDL. However in the 14 day denervated soleus, the 3wHF diet significantly augmented loss of mass, proteolysis rate, amount of the autophagosome marker LC3 II, and the amount of overall ubiquitination as compared to the control fed mice. On the contrary, the 3wHF diet had no significant effect in the EDL on amount of mass loss, proteolysis rate, LC3 levels, or ubiquitination. Fourteen days denervation also induced a loss of mitochondrial proteins in the soleus but not the EDL, regardless of the diet. Conclusions: Taken together, a short-term, high-fat diet augments denervation muscle atrophy by induction of protein degradation in the mitochondria-rich soleus but not in the glycolytic EDL. These findings suggest that the denervation-induced loss of mitochondria and HF diet-induced impairment of mitochondrial function may combine to promote skeletal muscle atrophy

    Conceptualizing Ecological Responses to Dam Removal: If You Remove It, What’s to Come?

    Get PDF
    One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam. Emerging from these models are response trajectories that clarify potential pathways of ecological transitions in each domain. We illustrate that the responses are controlled by multiple causal pathways and feedback loops among physical and biological components of the ecosystem, creating recovery trajectories that are dynamic and nonlinear. In most cases, short-term effects are typically followed by longer-term responses that bring ecosystems to new and frequently predictable ecological condition, which may or may not be similar to what existed prior to impoundment

    Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

    Get PDF
    Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 ÎŒg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 ÎŒg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 ÎŒg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  Όm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  Όm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  Όm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∌  300, and pointed observations at R  ∌  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link
    • 

    corecore