973 research outputs found

    Towards a Framework for Alignment Between Automotive Safety and Security Standards

    Get PDF
    Modern automotive systems increasingly rely on software and network connectivity for new functions and features. Security of the software and communications of the on-board system of systems becomes a critical concern for the safety of new generation vehicles. Besides methods and tools, safety and security of automotive systems requires frameworks of standards for holistic process and assurance. As a part of our ongoing work, this paper investigates the possibility of a combined safety and security approach to standards in the automotive domain. We examine existing approaches in the railway and avionics domain with similar challenges and identify speci c requirements for the automotive domain. We evaluate ISO 15408 as a potential candidate for a combined safety and security approach for complementing automotive safety standard ISO 26262, and discuss their points of alignment

    A comparison between Gaussian Process emulation and Genetic Algorithms for optimising energy use of buildings

    Get PDF
    Computing speed has increased greatly over recent years. Building designers can now simulate complex building models in a short time. However, even with short simulation times, building optimisation routines can still take too long for some applications. In this paper, we compare how well genetic algorithms (GAs) and Gaussian process emulation with sequential optimisation (GPESO) optimise a building to minimise the energy use. The GA approach performs a GA routine on an EnergyPlus model and the GPESO technique creates a Gaussian Process emulator (GPE) also based on the EnergyPlus model. The GPESO uses an expected improvement algorithm to sequentially improve the GPE. The results show that the GPESO technique outperforms the GA in terms of minimising the number of simulations required and the solution obtained.This work was supported by the Engineering and Physical Sciences Research Council [EPSRC grant number EP/J002380/1]

    The implications of transporting architecture on human health

    Get PDF
    This is the author accepted manuscript.Where modern buildings are unable to maintain the internal environment to within comfort levels they often rely on mechanical systems to become habitable. This could be due to bad design or putting the building in an environment for which it is not suited. Due to climate change it is likely that all buildings will in effect and time be moved to an environment for which it is not suited. In this work the effects of changes in climate on the internal environment will be explored and an index to define how moveable a construction might be, will be developed.The authors would like to thank the EPSRC for their support [grant ref: EP/J002380/1

    Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage

    Get PDF
    A primary drawback of solar thermal technologies, especially in a domestic setting, is that collection of thermal energy occurs when solar irradiance is abundant and there is generally little requirement for heating. Thermochemical Energy Storage (TCES) offers a means of storing thermal energy interseasonally with little heat loss. A combination of a Solar Thermal Collector (STC) and TCES system will allow a variety of different heating applications, such as domestic space and hot water heating as well as low temperature industrial process heat applications to be met in a low carbon way. This paper describes and assesses the feasibility of two novel technologies currently under development at Loughborough University; i) an evacuated flat plate STC and ii) composite TCES materials, coupled together into a system designed to store and supply thermal energy on demand throughout the year. Experimental results of composite TCES materials along with predicted performance of STC's are used within a developed model to assess key metrics of conceptual TCES + STC systems feasibility, including; charging time, payback time, cost/kWh, energy savings and CO2 savings. This paper demonstrates the economic, energy and carbon savings potential of conceptual TCES + STC systems suitable for domestic use

    The primary cosmic ray spectrum above 10 to the 19th power eV

    Get PDF
    Progress on a re-evaluation of the spectrum of cosmic rays determined with the Haverah Park shower array is described. Particular attention is paid to the reality of some giant showers

    Texture and chemistry of pyrite from the Waihi epithermal system, Hauraki Goldfield, New Zealand

    Get PDF
    The Waihi epithermal system is a low sulfidation epithermal system that hosts one of the largest epithermal Au-Ag deposits in the Southern Hemisphere. Various sulfide minerals are present within the system, including pyrite (FeS2), one of the most abundant sulfide minerals on Earth. Pyrite is an archive for hydrothermal fluid chemistry due to its crystal structure enabling incorporation of other elements such as Co, Ni, Se, As, Te. The presence or absence of these elements reflects the changes in the hydrothermal fluid chemistry throughout the growth of the grain. The textural variations in the grains indicates changes in growth conditions for each grain at the time of formation. The chemistry of each different zone, coupled with stages of growth, indicates the chemical influences on the pyrite in the Waihi system at that time. The use of petrographic, EPMA and LA-ICPMS analyses demonstrates distinctive textural zones within pyrite grains, varying in chemistry and appearance. Some zones contain elevated concentrations of Au and Ag, and varying concentrations of Cu, Pb or Zn. The textural observations indicate pyrite growth was interrupted by periods of dissolution before the grain continued growing. Most grains begin growth with high trace element concentrations. The lowest concentrations of trace elements occur in the outer growth phase. Inclusions are rich in Pb, Ca, Se, Zn, Au and Ni, and cause the ‘dirty’ texture observed in grains. The distinctive textural features are attributed to the varying concentrations in Au, As, Cu, Zn, Ag and Te. This research showcases the dynamics of hydrothermal fluid flow at Waihi, revealing that the gold-forming hydrothermal system at Waihi are more complex than initially thought. There is both evidence for periods of low gold pyrite growth, and periods of high pyrite growth

    Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru)

    Get PDF
    The retreat of glaciers in the tropics will have a significant impact on water resources. In order to overcome limitations with discontinuous to nonexistent hydrologic measurements in remote mountain watersheds, a hydrochemical and isotopic mass balance model is used to identify and characterize dry season water origins at the glacier fed Querococha basin located in southern Cordillera Blanca, Peru. Dry season water samples, collected intermittently between 1998 and 2007, were analyzed for major ions and the stable isotopes of water (δ<sup>18</sup>O and δ<sup>2</sup>H). The hydrochemical and isotopic data are analysed using conservative characteristics of selected tracers and relative contributions are calculated based on pre-identified contributing sources at mixing points sampled across the basin. The results show that during the dry-season, groundwater is the largest contributor to basin outflow and that the flux of groundwater is temporally variable. The groundwater contribution significantly correlates (P-value=0.004 to 0.044) to the antecedent precipitation regime at 3 and 18–36 months. Assuming this indicates a maximum of 4 years of precipitation accumulation in groundwater reserves, the Querococha watershed outflows are potentially vulnerable to multi-year droughts and climate related changes in the precipitation regime. The results show that the use of hydrochemical and isotopic data can contribute to hydrologic studies in remote, data poor regions, and that groundwater contribution to tropical proglacial hydrologic systems is a critical component of dry season discharge
    corecore