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ABSTRACT 
Where modern buildings are unable to maintain the 
internal environment to within comfort levels they 
often rely on mechanical systems to become 
habitable. This could be due to bad design or putting 
the building in an environment for which it is not 
suited. Due to climate change it is likely that all 
buildings will in effect and time be moved to an 
environment for which it is not suited. In this work 
the effects of changes in climate on the internal 
environment will be explored and an index to define 
how moveable a construction might be, will be 
developed. 

INTRODUCTION 
There is no end of examples where particular 
architectural movements have not had an influence 
on building design around the world. For example the 
Georgian symmetry of the 18th century and the gothic 
style of the Victorians, originating from the UK 
spread throughout the English speaking countries. 
Even these styles were not completely original with 
the Georgians taking influence from classical Italian 
Architecture and the Victorians from the Middle East 
and Asia(Ching, Jarzombek, & Prakash, 2010). 
These movements were not constrained by regional 
and national boundaries and the buildings were often 
constructed with little or no regard for the local 
climate. PassivHaus is a relatively new movement, 
which originated in Germany but now has many 
thousands of certified units around the world with the 
majority constructed in Europe. Although modelling 
of such buildings must take into account the local 
environment, the principles of the design are 
common – using passive means to regulate the 
internal environment (Feist, W, Pfluger, R, 
Scnieders, J, Kah, O, Kaufman,B, Krick, 2013). 
Where such buildings are optimised to maximise heat 
gains in the winter, there is a chance of overheating 
in the summer (McLeod, Hopfe, & Kwan, 2013) 
which could be further exacerbated by climate 
change in the future.  
Previous work has shown that there is a strong 
correlation between a given building’s internal 
environment (mean internal temperature) and its 
external environment (mean external temperature) 
over a period of significant length such as the six 

summer months (Coley et al., 2010). The work also 
showed that the correlation was invariant to the 
degree of climate change such that a building which 
performed well with an optimistic prediction of 
climate change, also performed well with a more 
pessimistic prediction. This was in part due to the 
nature of the application of climate change. In this 
case different climate scenarios were created using a 
set of transformations (Belcher et al., 2005), so it was 
no surprise that the correlation was so good. Further 
work demonstrated the same linear trend using 
stochastic weather data using representations of the 
current and future climates and a range of different 
weather file types (Eames et al 2010). However, in 
each case only a small subset of buildings was 
investigated and a single measure for characterising 
the building was considered – mean internal 
temperature against mean external temperature. 
Here we ask in a general way what the restrictions 
might be in terms of the indoor environmental 
parameters to changes in external climate, and how 
this sensitivity can be measured for a design. There 
are links here with the question of how different 
buildings will fair under climate change, particularly 
more extreme climate change where weather systems 
may fundamentally change with areas experiencing 
very different temperatures, wind speeds and levels 
of humidity (Eames et al., 2010; Stocker et al, 2013). 
There are also links with the mitigation of climate 
change and the need to provide buildings that do not 
rely on energy intensive systems to achieve 
reasonable internal conditions. In this work, a 
number indices will be investigated to define how 
moveable/resilient a construction might be. The 
buildings parameters and cooling strategies are 
typical for moderate and temperate northern 
European climates. The buildings will then be tested 
in a number of different climates for their resilience. 
The most appropriate indices to define resilience will 
then be combined to provide a multidimensional 
optimisation strategy indicating the most resilient 
constructions. Unlike the previous studies, which are 
restricted to a few discrete changes in the building 
parameters such as whether the building is 
lightweight or heavyweight, a surrogate model is 
used to estimate the thermal response of many 
thousands of buildings. There has been much recent 
interest in the use of statistical models to model 



buildings due to the computational advantage at 
searching for optimum solutions to reduce cooling or 
heating energy use or improve thermal comfort 
(Eisenhower et al., 2012; Tian et al, 2014). In each 
case a building construction is parameterised so that 
regression analysis can be used to search for 
solutions which weren’t originally part of the initial 
training set (Van Gelder et al, 2014). Ideally, the 
external environment would also be parameterised to 
be an input for the surrogate model. However, such a 
model would typically require the weather to be 
parameterised so that certain parameters could be 
selected to be space filling and create the best 
surrogate model (Van Gelder et al., 2014). Also, this 
would enable the derivative of the surrogate model 
surface to be determined directly (Roustant et al., 
2012). Weather data is much more likely to be 
discrete such that a simple space filling 
parameterisation is a non-trivial process. 
Furthermore, it is unknown how the weather file 
should be parameterised to create such a surrogate 
model for building simulation. As an extension to the 
building surrogate model, the external weather is 
parameterised in terms of the number of cooling 
degree hours (CDH), the mean external summer 
temperature, and weighted hours above the adaptive 
comfort temperature (WCDH) for various locations 
around the world. The effects on the thermal internal 
environment is then investigated using a simplified 
regression analysis. The focus of this work is how 
changing the external environment effects the 
internal environment using a comprehensive building 
set and how the external environment can be 
parametrised to define this effect. As similar work, 
the building strategy will be handled in a simplistic 
manner i.e. the occupants will behave in the new 
climate in the same manner as in all the other 
climates. For of a particular construction resilience to 
changes in climate it is not the absolute change in 
any metric which is important, but the rate of change. 

METHOD 
Coley developed a measure for quantifying the 
change in internal temperature in unconditioned 
spaces as a function of the change in external 
temperature(Coley et al., 2010). This measure is 
estimated by modelling (over a period greater than 
any relevant time constant, usually the whole 
summer period) the building in question in a dynamic 
thermal model then by using the relationship: 
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where C is the buildings amplification coefficient. 
Surprisingly for changes in mean internal/external 
temperatures and changes in maximum 
internal/external temperatures, C was found to be 
constant for any zone within a building and invariant 
to the level of external temperature change. For an 
architecture to be truly resilient, it would need to 
mitigate changes in not only small perturbations in 

the local weather, but to whole scale changes in the 
weather one might experience.  
The key to habitability is the level of thermal comfort 
within the building. The original work focussed on 
mean temperatures. While mean temperatures could 
be used to inform construction resilience, overheating 
is usually defined as a period where the internal 
temperature is above what is considered by an 
occupant to be comfortable. As such, it is more 
typical to experience overheating with shorter 
periods of weather, which are extreme compared to 
the typical conditions (Nicol et al, 2002). Ensuring a 
building minimises the change in mean internal 
temperature with a change in mean external 
temperature does not necessarily imply that the risk 
of overheating is reduced. In this work measures of 
thermal comfort will be considered here over the six 
summer months which are defined as the six warmest 
months in the weather year. 

Comfort Criteria 
PPD is a common measure which establishes a 
quantitative prediction of the thermally dissatisfied 
people by predicting the mean value of the thermal 
votes of a large group of people exposed to the same 
environment(BS EN ISO 7730, 1995). The PPD can 
be determined from  

PPD = 100 − 95%6 7.799:9;<=>?7.@ABC;<=D . (2) 

Where PMV is an index that predicts the mean value 
of the votes of a large group of people on a seven-
point scale ranging from hot (+3) to cold (-3). More 
details and explanation can be found elsewhere (BS 
EN ISO 7730). A well-functioning building should 
minimise the number of hours where the PMV lies 
outside the range of -0.5 to 0.5 (or minimise the 
number of hours where PPD is above 10.2%). The 
first internal comfort criteria will consider the 
number of hours where the PMV is greater than 0.5 
(PMVH). 
The number of PMVH gives a measurement of 
exceedance of the internal environment over a 
comfort level. However, it does not include a 
measure of intensity as all hours of exceedance have 
the same weight. The weighted cooling degree hours 
(WCDH) is a measure of how far the internal 
temperature deviates from the thermally neutral 
temperature.  Using adaptive comfort criteria the 
thermally neutral temperature is related to the 
running mean external temperature (BS EN 15251) 
which is given by 

EF = 0.33EHI + 18.8 (3) 
where Tc is the predicted comfort temperature on a 
given day and Trm is the running mean external 
temperature which is given by 

EHI = 0.8EHI6A + 0.2EIMNO6A (4) 
where Trm-1 is the running mean external temperature 
on the previous day and Tmean-1 is the mean 
temperature on the previous day. For free running 
buildings Nicol developed a criterion to weight the 



number of hours above the comfort temperature 
termed the Potential Daily Discomfort (PPD) (Nicol 
et al., 2008) given by the expression 

PDD =
1
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where  
Q = ) 1 + %@.ZA67.[B9∆X 6A (6) 

and 
∆E = EU\ − EF (7) 

ΔT is the difference between the operative 
temperature (Top) and the comfort temperature. While 
this weighting gives higher values for greater 
departures from the comfort temperature, the 
weighting tends to one for the greatest departures (ΔT 
> 5.52°C).  In this work to place more emphasis on 
the greater departures a simpler weighting was used 
where F is given by ΔT (TM49). The greatest 
discomfort is assumed for the largest values of ΔT 
and the total weighted degree hours is given by the 
expression 

WCDH = ∆E @
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The WCDH approximation is related to the duration 
of the exceedance as well as giving emphasis to more 
extreme temperatures which therefore takes into 
account the severity of the exceedance. 
As only unconditioned buildings are considered, we 
can expect any overheating metric to increase if a 
building is subjected to warmer conditions. What 
interests us here is the rate of change of these 
measures as a function of the change in external 
conditions, and in particular is the change linear and 
how it varies with the properties of the building  
construction. 

 
Figure 1: The building model consisting of five zones: four 

rooms and a corridor. 

The building model 
A multi storey building is considered (see figure 1) 
running in free running mode modelled using 
EnergyPlus (US Department of Energy, 2013). The 
building has a total floor area of 990m2. The model 
was created with the OpenStudio plugin for 
Sketchup. Table 1 lists the inputs for the model. All 
distributions are uniform between the given limits. 
The building is occupied as for a typical open office. 
The fractional occupancy for each schedule and the 
fractional schedule for the heat gains are not 

variables and are as specified by the ASHRAE for an 
open plan office. The parameters listed in table are 
used to cover a range of possible building 
configurations covering the building construction, 
occupancy, and building use. Table 2 lists the 
building construction parameters. For each parameter 
specified in table 1, the required U-value is achieved 
by varying the thickness of the insulation. The U 
value of the external floor is 0.19 Wm-2K-1 and the U 
value of the internal floor/ceiling is 0.84 Wm-2K-1.  
The windows are on all external walls with a U value 
of 1.39Wm-2K-1 and g-value of 0.586. The infiltration 
rate is, as specified, the uncontrolled leakiness of the 
building. Ventilation is provided by opening the 
windows when the internal temperature goes above 
24°C for all building models. The ventilation profile 
is also modulated by the occupancy profile, which is 
constant for all building models. The buildings are 
modelled using industry standard software. Although 
uncertainty in the construction has been considered, 
modelling uncertainties and assumptions such as 
discharge coefficients, static pressure distribution and 
static infiltration has not. These modelling 
uncertainties could be significant but are outside the 
scope of this work. 

Table 1 
Input parameters for the building model 

 
PARAMETER MINIMUM MAXIMUM 

Occupancy (m-2 per 
person) 

1.2 16 

Peak electrical gains 
(Wm-2) 

2 15 

Peak lighting (Wm-2) 5 12 
Wall U-value (Wm$2K$1) 0.05 0.6 
Roof U-value (Wm$2K$1) 0.05 0.4 
Window opening area 
(%) 

10 100 

Overhang percentage 
North 

0 100 

Overhang percentage 
East 

0 100 

Overhang percentage 
South 

0 100 

Overhang percentage 
West 

0 100 

Glazing percentage North  10 60 
Glazing percentage East 10 60 
Glazing Percentage South 10 60 
Glazing percentage West 10 60 
Infiltration rate (ach-1) 0.05 2 
 
The weather files used for the building simulation 
will be a geographical range of the typical weather 
data. This will be the CIBSE test reference years 
(Levermore et al., 2006) of London, Manchester and 
Southampton in the UK, weather files representative 
of climate change at Southampton for the 2080s for 
three percentiles of future climate (50th, 66th and 90th 
percentile) (Eames et al., 2010) , and example 



weather years for Beijing, Tokyo, Moscow and San 
Jose [DOE 2015].  The external weather will be 
parameterised in terms of the mean external summer 
temperature, the number of cooling degree hours 
with a base temperature of 15°C, 18°C and 21°C, and 
the external WCDH as given by equation 8 as 
typically used in more temperate climates. Similar to 
the internal environment there are a number of 
variables, which can be used and are important for 
influencing the internal environment. A different 
choice of external parameters could give different 
relationships with the internal environment.   
For each weather file location a meta-model was 
produced with the same set of simulation points (the 
buildings are in effect moved to the new weather 
location). Krigging algorithms are used in R 
(Roustant et al., 2012) to create the meta-model in 
this analysis, as it has been shown to perform well to 
predict environmental performance of building 
models (Van Gelder et al., 2014).   
The meta-model is designed using fifteen samples 
per input variable giving a total of 225 simulation 
points generated using an optimised Latin Hypercube 
design (Loeppky et al., 2009). From these meta-
models, relationships between the external weather 
and the indices of human health are developed using 
5,000 buildings (of the same form) with parameters 
sampled from table 1. 

RESULTS 
The results are presented in three ways. Firstly, the r2 
values for linear regression for metrics of mean 
internal temperature, internal WCDH and internal 
PMVH against the external mean temperature are 
shown (figure 2) to extend the analysis of Coley 
(Coley et al., 2010). Secondly, the regression r2 
values are shown for the most appropriate 
distribution for internal WCDH and PMVH metrics 
(figures 3 and 4). Finally, the coefficients of the 
regression are plotted against the key building 
parameters and each other to show relationships 
between the metrics and find the most optimally 
resilient buildings for this example (figures 5, 6 and 
7).  
The goodness of fit (r2 values) for linear regression 
for external mean summer temperature against the 
internal mean temperature, internal WCDH and 
internal PMVH is plotted in figure 2. In the case of 
mean internal temperature, the linear nature of the 
results is evident with 100% of the buildings having 
an r2 value greater than 0.84. In contrast, WCDH and 
PMVH is less well correlated with change in external 
mean temperature using linear regression. For 
WCDH, 84% of the buildings have r2 values between 
0.7 and 0.8 and the distribution is negatively skewed. 
For PMVH, 74% of all buildings have r2 values 
greater than 0.8 but the negative skew demonstrates 
that for some buildings the linear fit is not as 
appropriate. The same non-linear trend is found for 
the internal number of cooling degree days with a 

range of base temperatures against the external mean 
temperature (not shown).  

Figure 2: Histogram of the r2 values for linear regression 
for (a) internal mean summer temperature, (b) internal 
WCDH and (c) internal PMVH against the external mean 
summer temperature 

The r2 values for linear regression for internal 
WCDH and external WCDH and CDH with a base of 
21°C is plotted in Figure 3. For external WCDH 98% 
and 53% of all buildings have an r2 value greater than 
0.8 and 0.9 respectively.  For external CDH less than 
2% of all buildings have an r2 value greater than 0.9.  
Figure 2 demonstrates that the relationship between 
internal PMVH and external mean temperature is not 
linear for a number of buildings. Similar is also true 
when comparing similar relationships with other 
external environmental parameters. Plotting the r2 
values for linear regression for the natural logarithm 
of the internal PMVH with the natural logarithm of 
the external parameters, as displayed in figure 4, 
shows a clear correlation. For both external WCDH 
and CDH with a base of 21°C, over 94% of all 
buildings have an r2 value greater than 0.8. For 
external WCDH 34% have an r2 value greater than 
0.9. For external CDH the percentage of buildings 
increases to 54% with an r2 value greater than 0.9. 
Figures 2, 3 and 4 demonstrate that the external mean 



temperature is highly correlated to the internal mean 
temperature, the external WCDH is highly correlated 
to the internal WCDH and the natural logarithm of 
the external CDH is highly correlated to the natural 
logarithm of the internal PMVH. However it is not 
known whether a building which is more resilient 
according to one metric is also resilient to another; 
Buildings which are resilient to a particular metric 
will have a lower amplification coefficient (C from 
equation 1) from the linear regression. These 
amplification coefficients will be denoted as CTmean, 
CWCDH and CPMVH, with the name referring to the 
internal environment metric. 
The relationship between CPMVH and CWCDH is plotted 
in figure 5 and the relationship between CTmean and 
CWCDH is plotted in figure 6. It can be seen in Figure 
5 that buildings which are resilient to changes in 
mean external temperatures (low value of CTmean) are 
also resilient to changes in external WCDH. 
However, there is a clear trade-off between resilience 
to changes in WCDH and resilience to changes in 
PMVH (figure 6).  

 
Figure 3: Histogram of the r2 values for linear regression 
for internal WCDH against (a) external WCDH and (b) 
CDH (base temperature of 21°C).  

The response of the building to a change in external 
conditions depends on the building parameters. The 

response of CWCDH and CPMVH with the total heat 
transfer coefficient (sum of all U values multiplied 
by the respective surface area and the air exchange 
rate) is shown in Figure 7 and figure 8 respectively. 
In each case, buildings with a smaller heat transfer 
coefficient are more resilient to changes in the 
external environment but the changes with external 
WCDH is much greater with amplification 
coefficients varying between 1 and 12 (compared to 
0.2 and 1.3 for PMVH). The 33 buildings which 
might be considered optimal from figure 6 are shown 
as dark circles. The optimal buildings, which are 
more resilient for this example, each have a reduced 
glazed percentage on all sides, have thicker 
insulation and have more solar shading.   

 
Figure 4: Histogram of the r2 values for linear regression 
for ln internal PMVH against (a) external WCDH and (b) 
cooling degree days (base temperature of 21°C). 

DISCUSSION AND CONCLUSION 
In this work, the effects of changing the external 
environment are correlated to changes in the internal 
environment. Previous work has found that for a free 
running building, the mean summer internal 
temperature is linearly correlated to the mean 
summer external temperature (Coley et al., 2010; 
Eames et al., 2010) regardless of the form of the 
climate. However, this metric does not consider the 



effects to the occupants, which are more typically 
described in terms of the number of hours exceeding 
a threshold or predicted mean vote. Also mean 
conditions do not predict peak conditions and 
therefore the true implications to occupants. A strong 
correlation was found between the mean internal 
temperature and mean external temperature, as 
expected. Furthermore, a strong correlation was 
found between the external WCDH and internal 
WCDH – a measure of the intensity of the internal 
temperature above the predicted comfort temperature 
– and the external weighted cooling degree hours and 
the internal PMVH – the number of hours where 
greater than 10.2% of occupants is dissatisfied. While 
the change in PMVH was not found to be linearly 
correlated to the cooling degree hours, the natural 
logarithm of the PMVH was found to be linearly 
correlated to the natural logarithm of the cooling 
degree hours. This result is not so surprising as when 
all hours have greater than 10.2% of all occupants 
dissatisfied, a warmer climate will make no further 
difference to the total so the power law is more 
appropriate. 

 
Figure 5: CWCDH against CTmean. for all 5000 building. 

 

Figure 6: CWCDH against CPMVH. for all 5000 buildings 

For a building to be considered resilient to a range of 
climates, either through using the same architecture 
and moving its location or through the effects of 
climate change, the effect of the external 
environment on the internal environment should be 
minimised such that potential risk of overheating is 
minimised. However minimising the buildings 
amplification coefficients (C) with regards to a single 
metric does not guarantee that the overheating risk 
has been minimised (figure 5 and figure 6). In the 
original work of Coley the building was considered 
resilient if the change mean temperature 
amplification coefficient was reduced. Although the 
amplification coefficient for WCDH is linearly 
correlated to the mean temperature amplification 
coefficient (figure 5), it is not linearly correlated to 
the PMVH amplification coefficient (figure 6). 
Looking at the indices in more detail this result might 
be expected. The absolute number of WCDH for a 
building provides a measure of the level at which the 
comfort temperature has been exceeded. The 
weighting puts an emphasis on large departures from 
the comfort temperature. Optimising a building to 
flatten out the peaks in the temperature would 
therefore be key to minimising the amplification 
coefficient such as reducing peak gains and 
increasing thermal mass. The absolute number of 
PMVH is a measure of the number of hours at which 
the internal environment is uncomfortable for 
occupants. The metric in effect lumps together key 
weather parameters of mean radiant temperature, 
relative humidity, air temperature and airflow to give 
an equivalent environment. Optimising a building to 
reduce the number of PMVH would require 
minimising the heat gains and increasing its thermal 
insulation while maintaining adequate ventilation. 
Overall, using a single metric to measure the 
resilience to changes in climate is not appropriate and 
multiple indices must be used where by the building 
can then be optimised. In this case the overall metric 
for resilience would minimise the amplification 
coefficient for both the WCDH and PMVH. Given 
the trend in figure 5, an equal metric might consider 
the amplification coefficients in terms of PMVH and 
mean temperature. In either case, the measure of 
resilience does not depend on the magnitude of any 
index. It is the relative change of the internal 
conditions given a change in external conditions, 
which is important. Such buildings do not amplify 
the effect of overheating on the occupants if the 
climate changes. Therefore, when design teams have 
a choice between different options, the building 
which is more resilient, would have the lowest 
amplification coefficients. This work also has 
implications for locations where there is little 
appropriate weather data or weather files, which 
include climate change. The linear nature of the 
metrics shows that the resilience of the building is 
independent of the external weather, level of climate 
change or building location. As a result, very few 



weather files would need to be modelled to establish 
the amplification coefficients and thus determine the 
resilience of the building design and these do not 
necessarily need to be representative of the building 
location.  

NOMENCLATURE 
C            = Building amplification coefficient 
PMV      = Predicted mean vote 
PMVH     = Hours PMV is greater than 0.5. 
PPD       =  Percentage of People Dissatisfied. 
Tc           =  Comfort temperature. 
Top          = Operative temperature. 
Trm         =  Running mean temperature. 
WCDH  = Weighted Cooling Degree Hours. 

ACKNOWLEDGEMENT 
The authors would like to thank the EPSRC for their 
support [grant ref: EP/J002380/1] 

REFERENCES 

Belcher, S., et al. (2005). Constructing design 
weather data for future climates. Building 
Services Engineering Research and 
Technology, 26(1), 49–61.  

BS EN 15251. (2007). Indoor environmental input 
parameters for design and assessment of energy 
performance of buildings addressing indoor air 
quality, thermal environment, 3. 

BS EN ISO 7730. (1995). Moderate thermal 
environments: determination of the PMV and 
PPD indices and specification of the conditions 
for thermal comfort. 

Ching, F. D. K., et al. (2010). A global history of 
architecture (p. 816). John Wiley & Sons. 

Coley, D., & Kershaw, T. (2010). Changes in internal 
temperatures within the built environment as a 
response to a changing climate. Building and 
Environment, 45(1), 89–93.  

TM49: Design summer years for london. (2014). The 
Chartered Institution of Building Services 
Engineers. 

Eames, M., et al. (2010). On the creation of future 
probabilistic design weather years from 
UKCP09. Building Services Engineering 
Research and Technology, 32(2), 127–142.  

Eisenhower, B., et al. (2012). A methodology for 
meta-model based optimization in building 
energy models. Energy and Buildings, 47, 292–
301. 

Feist, W, et al. (2013). Passive house planning 
package 2007: requirements for quality 
approved passive houses. Technical 
Information PHI-2007/1 (E). 3rd revised ed. 
Darmstadt: Passivhaus Institute. 

Levermore, G. J., & Parkinson, J. B. (2006). 
Analyses and algorithms for new Test 
Reference Years and Design Summer Years for 
the UK. Building Service Engineering 
Research and Technology, 27(4), 311–325.  

Loeppky, J. L., et al. (2009). Choosing the sample 
size of a computer experiment: a practical 
guide. Technometrics, 51(4), 366–376. 

McLeod, R. S., et al. (2013). An investigation into 
future performance and overheating risks in 
Passivhaus dwellings. Building and 
Environment, 70, 189–209. 

Nicol, F., et al. (2008). Suggestion for new approach 
to overheating diagnostics, Proceedings of Air 
Conditioning and the Low Carbon Cooling 
Challenge, Windsor. 

Nicol, J. F., & Humphreys, M. A. (2002). Adaptive 
thermal comfort and sustainable thermal 
standards for buildings. Energy and Buildings, 
34(6), 563–572. 

Roustant, O., et al. (2012). DiceKriging , 
DiceOptim!: Two R packages for the analysis 
of computer experiments by Kriging-based 
metamodeling and optimization. Journal Of 
Statistical Software Volume, 51(1), 1–55. 

Stocker, T.F., et al. (2013). Climate change 2013: 
The Physical Science Basis. Contribution of 
Working group I to the fifth assessment report 
of the IPCC. Cambridge University Press, 
Cambridge, United Kingdom and New York, 
NY, USA. 

Tian, W., et al. (2014). Bootstrap techniques for 
sensitivity analysis and model selection in 
building thermal performance analysis. Applied 
Energy, 135, 320–328.  

US Department of Energy. (2013). EnergyPlus v8.2. 

Van Gelder, L., et al. (2014). Comparative study of 
metamodelling techniques in building energy 
simulation: Guidelines for practitioners. 
Simulation Modelling Practice and Theory, 49, 
245–257. 



 

Figure 7: CWCDH against the total heat transfer coefficient. 
The 33 optimal buildings in terms of minimizing CWCDH and 

CPMVH are shown by dark circles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: CPMVH against the total heat transfer coefficient. 
The 33 optimal buildings in terms of minimizing CWCDH and 

CPMVH are shown by dark circles 

 

Table 2 
Building constructions parameters used in the building model 

 MATERIAL 
THICKNESS 

(mm) 

CONDUCTIVITY 
(W/m.K) 

DENSITY 
(kg/m3) 

HEAT 
CAPACITY 

(J/K) 

EXTERNAL WALL    
Brick 106 0.89 1920 790 

Insulation 36-586 0.03 43 1210 
Brick 106 0.89 1920 790 

Plasterboard 12.5 0.21 700 1000 
GROUND FLOOR    

Insulation 110 0.025 700 1000 
Concrete 100 2.3 2300 1000 
Cavity 100 - - - 

Chipboard 20 0.13 500 1600 
Carpet 10 0.04 160 1360 

EXTERNAL ROOF    
Clay Tile 12.7 0.84 1900 800 

Membrane 0.1 1 1100 1000 
Insulation 69-594 0.03 43 1210 

Plasterboard 12.5 0.21 700 1000 
INTERNAL WALLS    

Plasterboard 12.5 0.21 700 1000 
Brick 0.005 0.89 1920 720 

Plasterboard 12.5 0.21 700 1000 
INTERNAL FLOORS/CEILINGS 

Carpet 10 0.04 160 1360 
Chipboard 20 0.13 500 1600 

Cavity 50 - - - 
Concrete 100 2.3 2300 1000 
Cavity 50 - - - 

Plasterboard 12.5 0.21 700 1000 


