
A COMPARISON BETWEEN GAUSSIAN PROCESS EMULATION AND GENETIC
ALGORITHMS FOR OPTIMISING ENERGY USE OF BUILDINGS

Michael Wood, Matthew Eames, and Peter Challenor

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

ABSTRACT
Computing speed has increased greatly over recent
years. Building designers can now simulate complex
building models in a short time. However, even with
short simulation times, building optimisation routines
can still take too long for some applications.

In this paper, we compare how well genetic algorithms
(GAs) and Gaussian process emulation with
sequential optimisation (GPESO) optimise a building
to minimise the energy use. The GA approach
performs a GA routine on an EnergyPlus model and
the GPESO technique creates a Gaussian Process
emulator (GPE) also based on the EnergyPlus model.
The GPESO uses an expected improvement algorithm
to sequentially improve the GPE. The results show
that the GPESO technique outperforms the GA in
terms of minimising the number of simulations
required and the solution obtained.

INTRODUCTION
Energy use in buildings accounts for around 40% of
all energy use in the European Union (Uihlein and
Eder 2010). EU countries must therefore drastically
reduce the CO2 emissions from buildings to meet their
carbon budgets. To reduce energy consumption in
buildings, it is essential that we design thermally
efficient new buildings and effectively retrofit older
ones. However, building design is a highly complex
problem, which cannot be solved without
computational aids.

Over recent decades, the performance of desktop
computers has increased greatly. Building designers
now routinely use highly sophisticated building
simulation software to design energy efficient
buildings. However, although more ‘accurate’
simulation tools have been created, most tools are not
capable of evaluating potential design options
automatically. Parametric studies are typically
completed manually, so it is therefore unlikely that
designers will routinely find the best.

Finding the optimum design for a building is
computationally demanding. To search all the possible

design options, the number of simulations (n) required
is,

! = #$,

where # is the number of search levels and % is the
number of dimensions.

This means that for nine parameter inputs, each with
10 potential values, 9 billion simulations would be
required. For a fast simulator taking only 0.001
seconds to run, the search would take three months. If
we double the potential values to 20, the analysis time
would increase to over 385 million years. The search
space also exponentially increases according to the
number of dimensions. This problem is commonly
know as Bellman’s curse of dimensionality (Bellman
1957).

Methods to overcome the curse of dimensionality have
been widely researched across many engineering
disciplines (Jones, Schonlau, and Welch 1998).
Commonly researched techniques, in building
simulation at least, include evolutionary algorithms,
multi-start, and simulated annealing (Bull 2011; Jones
D.R. 2001). However, although these methods have
their advantages, they are often best suited to objective
functions that are relatively quick to evaluate (Bull
2011).

In this research, we compare two optimisation
techniques. The first technique uses a Genetic
Algorithm (GA), which is used widely in building
research. The second technique, Gaussian Process
emulation with sequential optimisation (GPESO),
although common in other area of engineering, has
rarely been applied to buildings.

Due to the large number of different building types,
climates and variables of interest, it is difficult to
definitively compare GAs and GPESOs, since the
‘shape’ of the output can vary greatly. Instead, we
apply both tools to a sufficiently complex building
problem and qualitatively compare the results. We
hypothesise that the GPESO method is a more
efficient global optimisation method, because it
provides full interpolation between the training points
and can cover the full range of inputs. It can also

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

provide an estimate of its own uncertainty, which we
use to identify and correct areas of poor emulation
performance.

METHOD: THE BUILDING MODEL
The building model used in the assessment is a single
story medium office with a corridor to the north façade
and windows to the south, east and west, each with a
brise soleil (Figure 1).

Figure 1: Building model used

The construction of the building is based on the
Medium Office of ASHRAE 189.1-2009 (ASHRAE
and US Green Building Council 2014):

Table 1: Constructions used in the building model

Element Construction
External walls 25 mm Stucco

200 mm Concrete
(heavyweight)
Wall insulation 40 mm
12.5 mm Gypsum

Windows ASHRAE 189.1-2009
ExtWindow ClimateZone
4-5

Ceiling M11 100mm lightweight
concrete
F05 Ceiling air space
resistance
F16 Acoustic tile

Roof Roof Membrane
Roof Insulation [21]
Metal Decking

Internal wall 19mm gypsum board
air gap (m2K/W)
19 mm gypsum board

Table 2 shows the parameters varied in the assessment
to determine the lowest annual energy use.

Table 2: Model input values

VARIABLE LOWER
RANGE

UPPER
RANGE

Building floor area 200 m2 1000 m2
Aspect ratio 1 10
S window to wall ratio 0.02 0.9
E window to wall ratio 0.02 0.9
W window to wall ratio 0.02 0.9
S shade projection factor 0.05 1
E shade projection factor 0.05 1
W shade projection factor 0.05 1
Orientation -90° 90°

The annual energy use of each building configuration
was predicted using EnergyPlus (US Department of
Energy 2013) using weather data from the UKCIP09
test reference year for Cardiff, UK.

METHOD: OPTIMISATION
PROCEDURES
Genetic Algorithms
Genetic algorithms (GAs) are a class of evolutionary
algorithms which were made popular in the 1970s
(Holland 1975) and have become popular for
optimising complex models (Scrucca 2013; Goldberg
1989; Sivanandam and Deepa 2007). In a GA, the
input parameters are encoded onto a ‘chromosome’. In
this case, each chromosome represents a particular
building configuration.

The first step of the GA is the creation of an initial
population of input chromosomes. These
chromosomes are then evaluated, using EnergyPlus,
according to a fitness function, which defines the
‘fittest’ or ‘best’ output. In a GA, the fitness function
should be maximised, but since we want to minimise
the annual energy use, we express the fitness function
as

&'(!)** = −&(-).

After the initial population has been evaluated, a new
population is generated using selection, crossover and
mutation, which are defined as follows:

1." Selection: From the current population, the
fittest are then chosen for crossover and
mutation

2." Crossover: Creates new offspring from two
parent chromosomes by combining part of
the ‘genetic’ information from each

3." Mutation: Mutation randomly alters the
values of genes in a parent chromosome

After each generation, the best 5% of buildings
survive. This is referred to as elitism and ensures that
the best outputs are not lost over time.

The selection, crossover and mutation process is
repeated for a set number of iterations. The best output
from the final population is the ‘optimum’ solution.
The GA is implemented using the R package GA
(Scrucca 2013).

Gaussian Process emulation
Gaussian Process emulation is a spatial interpolation
method (Roustant, Ginsbourger, and Deville 2012).
which has its origins in geostatistics (Krige 1951), but
is now a widely used technique for exploring complex
high-dimensional models in climate and engineering
(Drignei 2009; Holdaway 1996; Tokmakian and
Challenor 2013). GP emulation is different from other
emulation methods because it fully interpolates
between each of the known outputs and makes
estimates of its own uncertainty. This gives GP
emulation an advantage over fitted quadratic surfaces
for example, which do not always capture the shape of
the objective function well and provide no estimate of
their own accuracy (Jones D.R. 2001).

In a GP analysis, sample data is used to estimate the
output of a model for untested input combinations. We
notate the output of the simulator (i.e. EnergyPlus) as
&(-), and the output of the GP emulator as &(-),
which is defined as multivariate Normal distribution:

& - = /0(1 - , 3 -, -),

where 1(-) is the mean function of the emulator and
3(-, -) is the covariance function.

Defining the emulator in this way does not mean that
we view the output of the simulator as stochastic. The
mean and variance are only used to quantify the
uncertainty in the output for untested areas of the
simulator. Figure 2 illustrates the mean and variance
functions for a simple GP emulator based on a one-
dimensional function,/4 = 567/(89:;)

<:;
+ - − 1 <.

Figure 2: Simple example showing a 1-dimensional
emulator.

Figure 2 shows how the emulator makes both
predictions for the mean function (in blue) and the
95% confidence intervals (red dotted lines). Figure 3
shows how an additional five training points allows
the emulator to rapidly converge on the objective
function, &(-).

Figure 3: 1D emulator based on 10 training simulations

Gaussian Process Emulation with Sequential
Optimisation (GPESO)
One approach to optimisation using GP emulators is
to optimise the emulator directly, since each run of the
emulator is several orders of magnitude faster than the
simulator. However, this approach is not efficient
(Jones D.R. 2001) because the emulator can create
false local minima, due to limited information about
the objective function. This is solved using the
expected improvement criterion (EI), which takes
advantage of the emulator’s uncertainty predictions
(Jones, Schonlau, and Welch 1998; Brochu, Cora, and
de Freitas 2010). The GPESO method is a 6-step
process that:

1." Creates a set of design input points, ? using
a maxi-min Latin Hypercube design;

2." Uses the EnergyPlus simulator to determine
&(?) for each of the inputs;

3." Builds a GP emulator using ? and &(?);
4." Maximises the expected improvement

criterion (EI) to determine the best input
configuration for the next simulation;

5." Uses ?@AB from step 4 to re-estimate the GP
model (including covariance parameters re-
estimation) based on the ? and ?@AB;

6." Repeats steps 4-5 up to 7 more times adding
in the new ?@AB /point into the GP model each
time. It then finds the minima of the GP
model as a proxy for determining the minima
of the simulator.

The GPESO technique identifies areas of potential
poor performance within the emulator and adds
additional training simulations in these areas to
improve emulation. For a more in-depth description of
this type of sequential optimisation, see Roustant et al.
(Roustant, Ginsbourger, and Deville 2012). For more
background on GP emulation as a whole, see (Santner,
Williams, and Notz 2003; Fang, Li, and Sudjianto
2006; Rasmussen and Williams 2006; O’Hagan 2006).

METHOD: TEST PROCEDURES
We performed 39 GPESOs with varying numbers of
simulations (see Table 3). The number of simulations
includes the the initial training set and the seven
additional simulations each following an evaluation of
the EI criteria.

Table 3: Simulation set ups for the GP optimisation

NUMBER OF
SIMULATIONS
(TRAINING + EI
EVALUATIONS)

NUMBER OF
GP
EMULATORS

REPETITIONS

37 4 3
57 4 3
107 3 3
207 4 3
407 5 3

Each GP sample is repeated three times because the
selection of the training set is stochastic and may
therefore lead to different results on each iteration.

The number of simulations used by the GA depends
on the ratio between the size of the population and the
number of iterations:

CD. D&/F'1G#H('D!* = IDJG#H('D!/×/L()MH('D!*

A GA with a set number of simulations can be
configured a number of ways. For example, a 100-
simulation GA can be set up as a population of 20 with
5 iterations, or a population of 10 with 10 iterations.
Table 4 shows the GA simulation routines that we
used in our assessment. Due to the stochastic nature of
GAs, there will be some variation in the output of each
individual routine. We therefore performed each
routine at least three times.

Table 4: Simulation routines for the Genetic Algorithms

R
O

U
T

IN
E

 N
O

.

PO
PU

L
A

T
IO

N

IT
E

R
A

T
IO

N
S

T
O

T
A

L
 S

IM
S

R
E

PE
T

IT
IO

N
S

1 2 15 30 3
2 2 25 50 3
3 3 10 30 3
4 5 10 50 3
5 5 20 100 3
6 5 40 200 3
7 5 80 400 3
8 10 3 30 3
9 10 5 50 3
10 10 10 100 3
11 10 20 200 3
12 10 40 400 3
13 15 2 30 3
14 20 5 100 3
15 20 10 200 3
16 20 20 400 3
17 25 2 50 3
18 40 5 200 3
19 40 10 400 3
20 80 5 400 3

RESULTS
Figure 4 shows best results from each process against
the number of simulations required to reach it. For the
GAs, we group the results by population size. For the
GP emulation method, the results are in red.

Figure 4: Results of simulations.

Figure 5 to Figure 8 show the results more clearly. We
have drawn the areas in the plots by connecting the
maximum and minimum values for each simulation
size to help show the general trend.

0 100 200 300 400 500 600

15
00
0

25
00
0

35
00
0

45
00
0

GA#vs#GP

Number.of.simulations

O
pt
im
al
.E
ne
rg
y.
U
se
.k
W
h Key

GP
2
3
5
10
15
20
25
40
80

Figure 5: Range of GA outputs for population = 5.

Figure 6: Range of GA outputs for population = 10.

Figure 7: Range of GA outputs for population = 20.

Figure 8: Range of GA outputs for population = 40.

Figure 9 shows the results of the Gaussian Process
only and Figure 10 shows the results overlaid with the
results of the GA technique.

Figure 9: Results of the Gaussian Process analysis only

Figure 10: All results overlaid

The GPESO compares favourably to all of the GA
population groups and has a much more stable output.
Although the GAs perform best with a small
population size, they are still outperformed in nearly
all cases by the GPESO approach.

Figure 11 and Figure 12 compare the best-performing
GA to the GPESO emulations undertaken in parallel.
Figure 11 compares the mean results from each set
(the set is determined by the number of simulations
used to produce that result) and Figure 12 compare the
best results from each set.

Figure 11: A comparison between the mean of the GA results
(population 10) and the GPESO

0 100 200 300 400 500

15
00
0

25
00
0

35
00
0

Genetic'Algorithm'/'population:''5

Number-of-simulations

O
pt
im
al
-E
ne
rg
y-
U
se
-k
W
h

0 100 200 300 400 500

15
00
0

25
00
0

35
00
0

Genetic'Algorithm'/'population:''10

Number-of-simulations

O
pt
im
al
-E
ne
rg
y-
U
se
-k
W
h

0 100 200 300 400 500

15
00
0

25
00
0

35
00
0

Genetic'Algorithm'/'population:''20

Number-of-simulations

O
pt
im
al
-E
ne
rg
y-
U
se
-k
W
h

0 100 200 300 400 500

15
00
0

25
00
0

35
00
0

Genetic'Algorithm'/'population:''40

Number-of-simulations

O
pt
im
al
-E
ne
rg
y-
U
se
-k
W
h

0 100 200 300 400 500

15
00
0

25
00
0

35
00
0

Gaussian'process'optimisation:'range'of'results

Number-of-simulations

O
pt
im
al
-E
ne
rg
y-
U
se
-k
W
h

0 100 200 300 400 500

15
00
0

25
00
0

35
00
0

Ranges'of'results

Number-of-simulations

O
pt
im
al
-E
ne
rg
y-
U
se
-k
W
h

Key
GP
5
10
20
40

Figure 12: A comparison between the best of the GP results
(population 10) and the GPESO

The results show that the GPESO output does not vary
much as the number of simulations is increased. The
GA does improve with more simulations, but still does
not match the performance of the GPESO.

The two best solutions offered by the GPESO and GA
(with a population of 10) are within 5% of each other.
The solutions have similarities, but there are also
significant differences (differences greater than 20%
are highlighted in bold in Table 5).

Table 5: Best solutions from the GA (population size 10) and
the GPESO. (Note that the GA and GPESO results have the
same sample size)

G
au

ss
ia

n
pr

oc
es

s

G
en

et
ic

al

go
rit

hm

U
ni

t

Number of
simulations

407 400 Integer

Best predicted
annual energy use

19934 20894 kWh

Building area 200 206 m2

Aspect ratio 1.00 1.16 Ratio

Glazed ratio (S) 0.59 0.37 Ratio

Glazed ratio (E) 0.02 0.42 Ratio

Glazed ratio (W) 0.15 0.16 Ratio

Projection factor (S) 0.65 0.47 Ratio

Projection factor (E) 1.00 0.35 Ratio

Projection factor (W) 0.05 0.31 Ratio

Orientation -58 1 Degrees

The major differences between the two solutions are
in the glazing, the brise soleil overhang factor and the
orientation. However, given that the two buildings
have roughly the same floor area and aspect ratio, the
form of both buildings are very similar (see Figure 13
and Figure 14).

Figure 13: Best GPESO solution (19934 kWh)

Figure 14: Best GA solution (20894 kWh)

Both buildings have different orientations but have
little or no glazing to the Northerly façade.

CONCLUSION
Quantifying the relative performance of each method
is beyond the scope of this paper, however, the results
suggest GPESO is more efficient than the GA,
regardless of the ratio between population size and
iterations.

The GPESO output appears to be much more stable,
even when using only 57 simulations. In contrast, the
GA required a greater number of simulations to
produce a more stable output. Even with 400
simulations, the stability of the GA was much less than
that obtained by the GPESO technique.

The GAs with smaller populations tended to produce
more consistent results. The best solutions from each
method have significant differences and similarities.
The solutions are, despite differences in their physical
characteristics, within 5% of each other. Therefore
there are likely to be several local optima within this
particular objective function. Although the results
suggest that the GPESO technique is better at finding
the global optimum, further work is required to
confirm and quantify this.

Future work should also consider different building
layouts and climates, as well as building types and
usages. It is likely that the efficacy of each technique
is dependent on the buildings and parameters being
studied.

More efficient global optimisation methods may
require ‘hybrid approaches’. Ramallo & Coley
(Ramallo-González and Coley 2014) have shown that
hybrid techniques can reduce the optimisation time
considerably and there is therefore scope for GPESO

to be hybridised with other techniques to allow more
efficient search routines. Further work should also
examine other factors such as robust optimisation and
uncertainty analysis.

NOMENCLATURE
-, simulator / emulator input;
&(∙), function representing the simulator;
&(∙), function representing the emulator;
?, training data;
O(-, -), correlation function;
3(-, -), covariance function;

ACKNOWLEDGEMENTS
This work was supported by the Engineering and
Physical Sciences Research Council [EPSRC grant
number EP/J002380/1].

REFERENCES

ASHRAE, and US Green Building Council. 2014.
ASHRAE 189.1-2014: Standard 189.1-2014 --
Standard for the Design of High-Performance
Green Buildings. ASHRAE.
https://www.ashrae.org/resources--
publications/bookstore/standard-189-1.

Bellman, Richard Ernest. 1957. Dynamic
Programming. Princeton University Press.

Brochu, Eric, Vlad M. Cora, and Nando de Freitas.
2010. “A Tutorial on Bayesian Optimization of
Expensive Cost Functions.”
http://arxiv.org/pdf/1012.2599.pdf.

Bull, Adam D. 2011. “Convergence Rates of
Efficient Global Optimization Algorithms.”
Journal of Machine Learning Research 12:
2879–2904.

Design Builder Software Ltd. 2015. “Design
Builder.” http://www.designbuilder.co.uk/.

Drignei, Dorin. 2009. “A Kriging Approach to the
Analysis of Climate Model Experiments.”
Journal of Agricultural, Biological, and
Environmental Statistics 14 (1): 99–114.

EDSL. 2015. “TAS.” Milton Keynes.
http://www.edsl.net/main/Software.aspx.

Fang, K, R Li, and A Sudjianto. 2006. Design and
Modeling for Computer Experiments. Chapman
and Hall / CRC.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning.

Holdaway, Margaret R. 1996. “Spatial Modeling and
Interpolation of Monthly Temperature Using
Kriging.” Climate Research 6 (3): 215–25.
doi:10.3354/cr006215.

Holland, JH. 1975. Adaptation in Natural and
Artificial Systems. The University of Michigan
Press, Ann Arbor.

IES Ltd. 2015. “IES Virtual Environment
(www.iesve.com).” http://www.iesve.com.

Jones D.R. 2001. “A Taxonomy of Global
Optimization Methods Based on Response
Surfaces.” Journal of Global Optimization 21
(4): 39. doi:10.1023/A:1012771025575.

Jones, DR, M Schonlau, and WJ Welch. 1998.
“Efficient Global Optimization of Expensive
BlackBox Functions.” Journal of Global
Optimization, no. 13: 345–83.

Krige, DG. 1951. “A Statistical Approach to Some
Basic Mine Valuation Problems on the
Witwatersrand.” J.Chem.Met.Min.Soc.S.Afr.,
119–39.

O’Hagan, A. 2006. “Bayesian Analysis of Computer
Code Outputs: A Tutorial.” Reliability
Engineering & System Safety 91 (10-11): 1290
– –1300. doi:10.1016/j.ress.2005.11.025.

Ramallo-González, A.P., and D.A. Coley. 2014.
“Using Self-Adaptive Optimisation Methods to
Perform Sequential Optimisation for Low-
Energy Building Design.” Energy and
Buildings 81 (October): 18–29.
doi:10.1016/j.enbuild.2014.05.037.

Rasmussen, C. E., and C. K. I. Williams. 2006.
Gaussian Processes for Machine Learning.
International Journal of Neural Systems. Vol.
14.

Roustant, Olivier, David Ginsbourger, and Yves
Deville. 2012. “DiceKriging, DiceOptim: Two
R Packages for the Analysis of Computer
Experiments by Kriging-Based Metamodeling
and Optimization.” Journal Of Statistical
Software 51 (1).

Santner, TJ, BJ Williams, and W Notz. 2003. The
Design and Analysis of Computer Experiments.
Santner TJ, Williams BJ, Notz W (2003).

Scrucca, Luca. 2013. “GA: A Package for Genetic
Algorithms in R.” Journal of Statistical
Software 53 (4): 1–37.

Sivanandam, SN, and SN Deepa. 2007. Introduction
to Genetic Algorithms. Springer-Verlag, Berlin.

Tokmakian, Robin, and Peter Challenor. 2013.
“Uncertainty in Modeled Upper Ocean Heat
Content Change.” Climate Dynamics 42 (3-4):
823–42.

Uihlein, Andreas, and Peter Eder. 2010. “Policy
Options towards an Energy Efficient
Residential Building Stock in the EU-27.”
Energy and Buildings 42 (6). Elsevier B.V.:
791–98. doi:10.1016/j.enbuild.2009.11.016.

US Department of Energy. 2013. “EnergyPlus
(apps1.eere.energy.gov/buildings/energyplus).”
http://apps1.eere.energy.gov/buildings/energypl
us/energyplus_about.cfm.

Wood, Mike, Matthew Eames, and Peter Challenor.
2014. “Proof of Concept for the Bayesian
Analysis of Computer Code Output in Building
Energy Modelling.” In Building Simulation and
Optimisation.

