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ABSTRACT 
Computing speed has increased greatly over recent 
years. Building designers can now simulate complex 
building models in a short time. However, even with 
short simulation times, building optimisation routines 
can still take too long for some applications. 
 
In this paper, we compare how well genetic algorithms 
(GAs) and Gaussian process emulation with 
sequential optimisation (GPESO) optimise a building 
to minimise the energy use. The GA approach 
performs a GA routine on an EnergyPlus model and 
the GPESO technique creates a Gaussian Process 
emulator (GPE) also based on the EnergyPlus model. 
The GPESO uses an expected improvement algorithm 
to sequentially improve the GPE. The results show 
that the GPESO technique outperforms the GA in 
terms of minimising the number of simulations 
required and the solution obtained. 

 

INTRODUCTION 
Energy use in buildings accounts for around 40% of 
all energy use in the European Union (Uihlein and 
Eder 2010). EU countries must therefore drastically 
reduce the CO2 emissions from buildings to meet their 
carbon budgets. To reduce energy consumption in 
buildings, it is essential that we design thermally 
efficient new buildings and effectively retrofit older 
ones. However, building design is a highly complex 
problem, which cannot be solved without 
computational aids.  
 
Over recent decades, the performance of desktop 
computers has increased greatly. Building designers 
now routinely use highly sophisticated building 
simulation software to design energy efficient 
buildings. However, although more ‘accurate’ 
simulation tools have been created, most tools are not 
capable of evaluating potential design options 
automatically. Parametric studies are typically 
completed manually, so it is therefore unlikely that 
designers will routinely find the best.  
 
Finding the optimum design for a building is 
computationally demanding. To search all the possible 

design options, the number of simulations (n) required 
is, 
 
! = #$, 
 
where # is the number of search levels and % is the 
number of dimensions.  
 
This means that for nine parameter inputs, each with 
10 potential values, 9 billion simulations would be 
required. For a fast simulator taking only 0.001 
seconds to run, the search would take three months. If 
we double the potential values to 20, the analysis time 
would increase to over 385 million years. The search 
space also exponentially increases according to the 
number of dimensions. This problem is commonly 
know as Bellman’s curse of dimensionality (Bellman 
1957).  
 
Methods to overcome the curse of dimensionality have 
been widely researched across many engineering 
disciplines (Jones, Schonlau, and Welch 1998). 
Commonly researched techniques, in building 
simulation at least, include evolutionary algorithms, 
multi-start, and simulated annealing (Bull 2011; Jones 
D.R. 2001). However, although these methods have 
their advantages, they are often best suited to objective 
functions that are relatively quick to evaluate (Bull 
2011).  
 
In this research, we compare two optimisation 
techniques. The first technique uses a Genetic 
Algorithm (GA), which is used widely in building 
research. The second technique, Gaussian Process 
emulation with sequential optimisation (GPESO), 
although common in other area of engineering, has 
rarely been applied to buildings.  
 
Due to the large number of different building types, 
climates and variables of interest, it is difficult to 
definitively compare GAs and GPESOs, since the 
‘shape’ of the output can vary greatly. Instead, we 
apply both tools to a sufficiently complex building 
problem and qualitatively compare the results. We 
hypothesise that the GPESO method is a more 
efficient global optimisation method, because it 
provides full interpolation between the training points 
and can cover the full range of inputs. It can also 
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provide an estimate of its own uncertainty, which we 
use to identify and correct areas of poor emulation 
performance.  

METHOD: THE BUILDING MODEL 
The building model used in the assessment is a single 
story medium office with a corridor to the north façade 
and windows to the south, east and west, each with a 
brise soleil (Figure 1). 
 

 
Figure 1: Building model used 

The construction of the building is based on the 
Medium Office of ASHRAE 189.1-2009 (ASHRAE 
and US Green Building Council 2014): 
 
Table 1: Constructions used in the building model 

Element Construction 
External walls 25 mm Stucco 

200 mm Concrete 
(heavyweight)                    
Wall insulation 40 mm 
12.5 mm Gypsum 

Windows ASHRAE 189.1-2009 
ExtWindow ClimateZone 
4-5 

Ceiling M11 100mm lightweight 
concrete 
F05 Ceiling air space 
resistance 
F16 Acoustic tile 

Roof Roof Membrane 
Roof Insulation [21] 
Metal Decking 

Internal wall 19mm gypsum board 
air gap (m2K/W) 
19 mm gypsum board 

  
Table 2 shows the parameters varied in the assessment 
to determine the lowest annual energy use. 
 

Table 2: Model input values 

VARIABLE LOWER 
RANGE 

UPPER 
RANGE 

Building floor area 200 m2 1000 m2 
Aspect ratio 1 10 
S window to wall ratio 0.02 0.9 
E window to wall ratio 0.02 0.9 
W window to wall ratio 0.02 0.9 
S shade projection factor 0.05 1 
E shade projection factor 0.05 1 
W shade projection factor 0.05 1 
Orientation -90° 90° 

 
The annual energy use of each building configuration 
was predicted using EnergyPlus (US Department of 
Energy 2013) using weather data from the UKCIP09 
test reference year for Cardiff, UK.  
 

METHOD: OPTIMISATION 
PROCEDURES 
Genetic Algorithms 
Genetic algorithms (GAs) are a class of evolutionary 
algorithms which were made popular in the 1970s 
(Holland 1975) and have become popular for 
optimising complex models (Scrucca 2013; Goldberg 
1989; Sivanandam and Deepa 2007). In a GA, the 
input parameters are encoded onto a ‘chromosome’. In 
this case, each chromosome represents a particular 
building configuration.  
 
The first step of the GA is the creation of an initial 
population of input chromosomes. These 
chromosomes are then evaluated, using EnergyPlus, 
according to a fitness function, which defines the 
‘fittest’ or ‘best’ output. In a GA, the fitness function 
should be maximised, but since we want to minimise 
the annual energy use, we express the fitness function 
as 
 
&'(!)** = −&(-). 
 
After the initial population has been evaluated, a new 
population is generated using selection, crossover and 
mutation, which are defined as follows: 
 

1." Selection: From the current population, the 
fittest are then chosen for crossover and 
mutation 

2." Crossover: Creates new offspring from two 
parent chromosomes by combining part of 
the ‘genetic’ information from each 

3." Mutation: Mutation randomly alters the 
values of genes in a parent chromosome 

 
After each generation, the best 5% of buildings 
survive. This is referred to as elitism and ensures that 
the best outputs are not lost over time.  



 
The selection, crossover and mutation process is 
repeated for a set number of iterations. The best output 
from the final population is the ‘optimum’ solution. 
The GA is implemented using the R package GA 
(Scrucca 2013). 

Gaussian Process emulation 
Gaussian Process emulation is a spatial interpolation 
method (Roustant, Ginsbourger, and Deville 2012). 
which has its origins in geostatistics (Krige 1951), but 
is now a widely used technique for exploring complex 
high-dimensional models in climate and engineering 
(Drignei 2009; Holdaway 1996; Tokmakian and 
Challenor 2013). GP emulation is different from other 
emulation methods because it fully interpolates 
between each of the known outputs and makes 
estimates of its own uncertainty. This gives GP 
emulation an advantage over fitted quadratic surfaces 
for example, which do not always capture the shape of 
the objective function well and provide no estimate of 
their own accuracy (Jones D.R. 2001). 
 
In a GP analysis, sample data is used to estimate the 
output of a model for untested input combinations. We 
notate the output of the simulator (i.e. EnergyPlus) as 
&(-), and the output of the GP emulator as &(-), 
which is defined as multivariate Normal distribution:  
 
& - = /0(1 - , 3 -, - ), 
 
where 1(-) is the mean function of the emulator and 
3(-, -) is the covariance function.  
 
Defining the emulator in this way does not mean that 
we view the output of the simulator as stochastic. The 
mean and variance are only used to quantify the 
uncertainty in the output for untested areas of the 
simulator. Figure 2 illustrates the mean and variance 
functions for a simple GP emulator based on a one-
dimensional function,/4 = 567/(89:;)

<:;
+ - − 1 <. 

 

 
Figure 2: Simple example showing a 1-dimensional 
emulator. 

Figure 2 shows how the emulator makes both 
predictions for the mean function (in blue) and the 
95% confidence intervals (red dotted lines). Figure 3 
shows how an additional five training points allows 
the emulator to rapidly converge on the objective 
function, &(-). 
  

 
Figure 3: 1D emulator based on 10 training simulations 

Gaussian Process Emulation with Sequential 
Optimisation (GPESO) 
One approach to optimisation using GP emulators is 
to optimise the emulator directly, since each run of the 
emulator is several orders of magnitude faster than the 
simulator. However, this approach is not efficient 
(Jones D.R. 2001) because the emulator can create 
false local minima, due to limited information about 
the objective function. This is solved using the 
expected improvement criterion (EI), which takes 
advantage of the emulator’s uncertainty predictions 
(Jones, Schonlau, and Welch 1998; Brochu, Cora, and 
de Freitas 2010). The GPESO method is a 6-step 
process that: 
 

1." Creates a set of design input points, ? using 
a maxi-min Latin Hypercube design; 

2." Uses the EnergyPlus simulator to determine 
&(?) for each of the inputs; 

3." Builds a GP emulator using ? and &(?); 
4." Maximises the expected improvement 

criterion (EI) to determine the best input 
configuration for the next simulation; 

5." Uses ?@AB from step 4 to re-estimate the GP 
model (including covariance parameters re-
estimation) based on the ? and ?@AB; 

6." Repeats steps 4-5 up to 7 more times adding 
in the new ?@AB /point into the GP model each 
time. It then finds the minima of the GP 
model as a proxy for determining the minima 
of the simulator. 



The GPESO technique identifies areas of potential 
poor performance within the emulator and adds 
additional training simulations in these areas to 
improve emulation. For a more in-depth description of 
this type of sequential optimisation, see Roustant et al. 
(Roustant, Ginsbourger, and Deville 2012). For more 
background on GP emulation as a whole, see (Santner, 
Williams, and Notz 2003; Fang, Li, and Sudjianto 
2006; Rasmussen and Williams 2006; O’Hagan 2006).   
 

METHOD: TEST PROCEDURES 
We performed 39 GPESOs with varying numbers of 
simulations (see Table 3). The number of simulations 
includes the the initial training set and the seven 
additional simulations each following an evaluation of 
the EI criteria. 
 
Table 3: Simulation set ups for the GP optimisation 

NUMBER OF 
SIMULATIONS 
(TRAINING + EI 
EVALUATIONS) 

NUMBER OF 
GP 
EMULATORS 

REPETITIONS 

37 4 3 
57 4 3 
107 3 3 
207 4 3 
407 5 3 

 
Each GP sample is repeated three times because the 
selection of the training set is stochastic and may 
therefore lead to different results on each iteration. 
 
The number of simulations used by the GA depends 
on the ratio between the size of the population and the 
number of iterations: 
  
CD. D&/F'1G#H('D!* = IDJG#H('D!/×/L()MH('D!* 

 
A GA with a set number of simulations can be 
configured a number of ways. For example, a 100-
simulation GA can be set up as a population of 20 with 
5 iterations, or a population of 10 with 10 iterations.  
Table 4 shows the GA simulation routines that we 
used in our assessment. Due to the stochastic nature of 
GAs, there will be some variation in the output of each 
individual routine. We therefore performed each 
routine at least three times.  
 

Table 4: Simulation routines for the Genetic Algorithms 
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1 2 15 30 3 
2 2 25 50 3 
3 3 10 30 3 
4 5 10 50 3 
5 5 20 100 3 
6 5 40 200 3 
7 5 80 400 3 
8 10 3 30 3 
9 10 5 50 3 
10 10 10 100 3 
11 10 20 200 3 
12 10 40 400 3 
13 15 2 30 3 
14 20 5 100 3 
15 20 10 200 3 
16 20 20 400 3 
17 25 2 50 3 
18 40 5 200 3 
19 40 10 400 3 
20 80 5 400 3 

 

RESULTS 
Figure 4 shows best results from each process against 
the number of simulations required to reach it. For the 
GAs, we group the results by population size. For the 
GP emulation method, the results are in red.  

 
Figure 4: Results of simulations. 

Figure 5 to Figure 8 show the results more clearly. We 
have drawn the areas in the plots by connecting the 
maximum and minimum values for each simulation 
size to help show the general trend. 
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Figure 5: Range of GA outputs for population = 5. 

 
Figure 6: Range of GA outputs for population = 10. 

 
Figure 7: Range of GA outputs for population = 20. 

 
Figure 8: Range of GA outputs for population = 40. 

Figure 9 shows the results of the Gaussian Process 
only and Figure 10 shows the results overlaid with the 
results of the GA technique. 
 

 
Figure 9: Results of the Gaussian Process analysis only 

 

 
Figure 10: All results overlaid 

The GPESO compares favourably to all of the GA 
population groups and has a much more stable output. 
Although the GAs perform best with a small 
population size, they are still outperformed in nearly 
all cases by the GPESO approach.  
 
Figure 11 and Figure 12 compare the best-performing 
GA to the GPESO emulations undertaken in parallel. 
Figure 11 compares the mean results from each set 
(the set is determined by the number of simulations 
used to produce that result) and Figure 12 compare the 
best results from each set. 

 
Figure 11: A comparison between the mean of the GA results 
(population 10) and the GPESO 
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Figure 12: A comparison between the best of the GP results 
(population 10) and the GPESO 

The results show that the GPESO output does not vary 
much as the number of simulations is increased. The 
GA does improve with more simulations, but still does 
not match the performance of the GPESO. 
 
The two best solutions offered by the GPESO and GA 
(with a population of 10) are within 5% of each other. 
The solutions have similarities, but there are also 
significant differences (differences greater than 20% 
are highlighted in bold in Table 5). 
 
Table 5: Best solutions from the GA (population size 10) and 
the GPESO. (Note that the GA and GPESO results have the 
same sample size) 
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Number of 
simulations 

407 400 Integer 

Best predicted 
annual energy use 

19934 20894 kWh 

Building area 200 206 m2 

Aspect ratio 1.00 1.16 Ratio 

Glazed ratio (S) 0.59 0.37 Ratio 

Glazed ratio (E) 0.02 0.42 Ratio 

Glazed ratio (W) 0.15 0.16 Ratio 

Projection factor (S) 0.65 0.47 Ratio 

Projection factor (E) 1.00 0.35 Ratio 

Projection factor (W) 0.05 0.31 Ratio 

Orientation -58 1 Degrees 

 
The major differences between the two solutions are 
in the glazing, the brise soleil overhang factor and the 
orientation. However, given that the two buildings 
have roughly the same floor area and aspect ratio, the 
form of both buildings are very similar (see Figure 13 
and Figure 14).  
 

 
Figure 13: Best GPESO solution (19934 kWh) 

 
Figure 14: Best GA solution (20894 kWh) 

Both buildings have different orientations but have 
little or no glazing to the Northerly façade.  
 

CONCLUSION 
Quantifying the relative performance of each method 
is beyond the scope of this paper, however, the results 
suggest GPESO is more efficient than the GA, 
regardless of the ratio between population size and 
iterations.  
 
The GPESO output appears to be much more stable, 
even when using only 57 simulations. In contrast, the 
GA required a greater number of simulations to 
produce a more stable output. Even with 400 
simulations, the stability of the GA was much less than 
that obtained by the GPESO technique.  
 
The GAs with smaller populations tended to produce 
more consistent results. The best solutions from each 
method have significant differences and similarities. 
The solutions are, despite differences in their physical 
characteristics, within 5% of each other. Therefore 
there are likely to be several local optima within this 
particular objective function. Although the results 
suggest that the GPESO technique is better at finding 
the global optimum, further work is required to 
confirm and quantify this. 
 
Future work should also consider different building 
layouts and climates, as well as building types and 
usages. It is likely that the efficacy of each technique 
is dependent on the buildings and parameters being 
studied. 
 
More efficient global optimisation methods may 
require ‘hybrid approaches’. Ramallo & Coley 
(Ramallo-González and Coley 2014) have shown that 
hybrid techniques can reduce the optimisation time 
considerably and there is therefore scope for GPESO 



to be hybridised with other techniques to allow more 
efficient search routines. Further work should also 
examine other factors such as robust optimisation and 
uncertainty analysis.  

NOMENCLATURE 
-,  simulator / emulator input; 
&(∙),  function representing the simulator; 
&(∙),  function representing the emulator; 
?,  training data; 
O(-, -),  correlation function; 
3(-, -),  covariance function; 
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