741 research outputs found

    Large adiabatic temperature and magnetic entropy changes in EuTiO3

    Get PDF
    We have investigated the magnetocaloric effect in single and polycrystalline samples of quantum paraelectric EuTiO3 by magnetization and heat capacity measurements. Single crystalline EuTiO3 shows antiferromagnetic ordering due to Eu2+ magnetic moments below TN = 5.6 K. This compound shows a giant magnetocaloric effect around its Neel temperature. The isothermal magnetic entropy change is 49 Jkg-1K-1, the adiabatic temperature change is 21 K and the refrigeration capacity is 500 JKg-1 for a field change of 7 T at TN. The single crystal and polycrystalline samples show similar values of the magnetic entropy change and adiabatic temperature changes. The large magnetocaloric effect is due to suppression of the spin entropy associated with localized 4f moment of Eu2+ ions. The giant magnetocaloric effect together with negligible hysteresis, suggest that EuTiO3 could be a potential material for magnetic refrigeration below 20 K.Comment: 12 pages, 4 figure

    Conductance quantization in etched Si/SiGe quantum point contacts

    Full text link
    We fabricated strongly confined Schottky-gated quantum point contacts by etching Si/SiGe heterostructures and observed intriguing conductance quantization in units of approximately 1e2/h. Non-linear conductance measurements were performed depleting the quantum point contacts at fixed mode-energy separation. We report evidences of the formation of a half 1e2/h plateau, supporting the speculation that adiabatic transmission occurs through 1D modes with complete removal of valley and spin degeneracies.Comment: to appear in Physical Review

    Large adiabatic temperature and magnetic entropy changes in EuTiO3

    Get PDF
    Under the terms of the Creative Commons Attribution license.-- et al.We have investigated the magnetocaloric effect in single and polycrystalline samples of quantum paraelectric EuTiO3 by magnetization and heat capacity measurements. Single crystalline EuTiO3 shows antiferromagnetic ordering due to Eu2+ magnetic moments below TN=5.6K. This compound shows a giant magnetocaloric effect around its Néel temperature. The isothermal magnetic entropy change is 49Jkg-1K-1, the adiabatic temperature change is 21 K, and the refrigeration capacity is 500Jkg-1 for a field change of 7 T at TN. The single crystal and polycrystalline samples show similar values of the magnetic entropy and adiabatic temperature changes. The large magnetocaloric effect is due to suppression of the spin entropy associated with the localized 4f moment of Eu2+ ions. The giant magnetocaloric effect, together with negligible hysteresis, suggest that EuTiO3 could be a potential material for magnetic refrigeration below 40 K.R.M. acknowledges the support of MOE Tier 1 Grant No. R144-000-308-112. J.-S.W. acknowledges the support of MOE Tier 2 Grant No. R144-000-349-112. M.E. acknowledges financial support from MINECO through Grant No. FEDER-MAT2012-38318-C03-01.Peer Reviewe

    Low field magnetotransport in strained Si/SiGe cavities

    Full text link
    Low field magnetotransport revealing signatures of ballistic transport effects in strained Si/SiGe cavities is investigated. We fabricated strained Si/SiGe cavities by confining a high mobility Si/SiGe 2DEG in a bended nanowire geometry defined by electron-beam lithography and reactive ion etching. The main features observed in the low temperature magnetoresistance curves are the presence of a zero-field magnetoresistance peak and of an oscillatory structure at low fields. By adopting a simple geometrical model we explain the oscillatory structure in terms of electron magnetic focusing. A detailed examination of the zero-field peak lineshape clearly shows deviations from the predictions of ballistic weak localization theory.Comment: Submitted to Physical Review B, 25 pages, 7 figure

    Essential singularity in the Renyi entanglement entropy of the one-dimensional XYZ spin-1/2 chain

    Full text link
    We study the Renyi entropy of the one-dimensional XYZ spin-1/2 chain in the entirety of its phase diagram. The model has several quantum critical lines corresponding to rotated XXZ chains in their paramagnetic phase, and four tri-critical points where these phases join. Two of these points are described by a conformal field theory and close to them the entropy scales as the logarithm of its mass gap. The other two points are not conformal and the entropy has a peculiar singular behavior in their neighbors, characteristic of an essential singularity. At these non-conformal points the model undergoes a discontinuous transition, with a level crossing in the ground state and a quadratic excitation spectrum. We propose the entropy as an efficient tool to determine the discontinuous or continuous nature of a phase transition also in more complicated models.Comment: 5 pages, 2 figure

    Life cycle assessment of conventional and advanced two-stage energy-from-waste technologies for methane production

    Get PDF
    This study integrates the Life Cycle Assessment (LCA) of thermal and biological technologies for municipal solid waste management within the context of renewable resource use for methane production. Five different scenarios are analysed for the UK, the main focus being on advanced gasification-plasma technology for Bio Substitute natural gas (Bio-SNG) production, anaerobic digestion and incineration. Firstly, a waste management perspective has been taken and a functional unit of 1 kg of waste to be disposed was used; secondly, according to an energy production perspective a functional unit of 1 MJ of renewable methane produced was considered. The first perspective demonstrates that when the current energy mix is used in the analysis (i.e. strongly based on fossil resources), processes with higher electric efficiency determine lower global warming potential (GWP). However, as the electricity mix in the UK becomes less carbon intensive and the natural gas mix increases the carbon intensity, processes with higher Bio-SNG yield are shown to achieve a lower global warming impact within the next 20 years. When the perspective of energy production is taken, more efficient technologies for renewable methane production give a lower GWP for both current and future energy mix. All other LCA indicators are also analysed and the hot spot of the anaerobic digestion process is performed

    Giant isotope effect in the incoherent tunneling specific heat of the molecular nanomagnet Fe8

    Get PDF
    Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe nuclear spins leads to a huge enhancement of the specific heat below 1 K, ascribed to a strong increase in the spin-lattice relaxation rate Gamma arising from incoherent, nuclear-spin-mediated magnetic quantum tunneling in the ground-doublet. Since Gamma is found comparable to the expected tunneling rate, the latter process has to be inelastic. A model for the coupling of the tunneling levels to the lattice is presented. Under transverse field, a crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.Comment: Replaced with version accepted for publication in Physical Review Letter

    Non-Pharmacological Treatments in Lewy Body Disease: A Systematic Review

    Get PDF
    Introduction: Lewy body disease (LBD) is the second most common neurodegenerative disorder in patients older than 65 years. LBD is characterized by heterogeneous symptoms like fluctuation in attention, visual hallucinations, Parkinsonism, and REM sleep behaviour disorders. Considering the relevant social impact of the disease, identifying effective non-pharmacological treatments is becoming a priority. The aim of this systematic review was to provide an up-to-date literature review of the most effective non-pharmacological treatments in patients with LBD, focussing on evidence-based interventions. Methods: Following PRISMA criteria, we carried out a systematic search through three databases (PubMed, Cochrane Libraries, and PEDro) including physical therapy (PT), cognitive rehabilitation (CR), light therapy (LT), transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), deep brain stimulation (DBS). All studies were qualitatively assessed using standardized tools (CARE and EPHPP). Results: We obtained a total of 1,220 studies of which 23 original articles met eligibility criteria for inclusion. The total number of LBD patients included was 231; mean age was 69.98, predominantly men (68%). Some PT studies highlighted improvements in motor deficits. CR produced significant improvements in mood, cognition, and patient's quality of life and satisfaction. LT outlined a partial trend of improvements in mood and sleep quality. DBS, ECT, and TMS showed some partial improvements mainly on neuropsychiatric symptoms, whereas tDCS provided partial improvements in attention. Conclusion: This review highlights the efficacy of some evidence-based rehabilitation studies in LBD; however, further randomized controlled trials with larger samples are needed to provide definitive recommendations

    Introduction to Quantum Integrability

    Full text link
    In this article we review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions. The relation between the aforementioned equations and the braid group is briefly discussed. A short review on quantum groups as well as the quantum inverse scattering method (algebraic Bethe ansatz) is also presented.Comment: 56 pages, Latex. A few typos correcte

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials
    • …
    corecore