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Abstract  12 

This study integrates the Life Cycle Assessment (LCA) of thermal and biological technologies for 13 

municipal solid waste management within the context of renewable resource use for methane 14 

production. Five different scenarios are analysed for the UK, the main focus being on advanced 15 

gasification-plasma technology for Bio-Substitute natural gas (Bio-SNG) production, anaerobic 16 

digestion and incineration. Firstly, a waste management perspective has been taken and a functional 17 

unit of 1 kg of waste to be disposed was used; secondly, according to an energy production 18 

perspective a functional unit of 1 MJ of renewable methane produced was considered. The first 19 

perspective demonstrates that when the current energy mix is used in the analysis (i.e. strongly based 20 

on fossil resources), processes with higher electric efficiency determine lower global warming 21 

potential (GWP). However, as the electricity mix in the UK becomes less carbon intensive and the 22 

natural gas mix increases the carbon intensity, processes with higher Bio-SNG yield are shown to 23 

achieve a lower global warming impact within the next 20 years. When the perspective of energy 24 

production is taken, more efficient technologies for renewable methane production give a lower GWP 25 

for both current and future energy mix. All other LCA indicators are also analysed and the hot spot of 26 

the anaerobic digestion process is performed. 27 
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Highlights 30 

 When the electricity mix is highly carbonised waste-to-electricity determine a lower impact 31 

than waste-to-methane 32 

 The GWP of bio-SNG production from waste decreases for future UK energy scenarios 33 

 Opposite results are reported when the emphasis is on energy production rather than waste 34 

management 35 

 36 

  37 
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1.1 Introduction  38 

Increasing environmental awareness has pushed European governments to impose binding targets to 39 

increase the share of renewable energy consumption and decrease carbon emissions. According to the 40 

articles 8 and 9 of the Renewable Energy Directive (RED) (European Commission, 2009), the UK is 41 

committed to be utilising 15% of its energy (that includes heat, electricity and energy for transport 42 

(HM UK Government, 2009; UK Government, 2009)) from renewable resources by 2020. Further 43 

targets have also been put in place in 2014 (European Council, 2014): by 2030 greenhouse gases are 44 

to be reduced by at least 40% compared to 1990 and at least 27% of energy has to be renewable. 45 

For the development of renewable energy, the financial support and the development of emerging 46 

technologies are considered fundamental (UK Government, 2009). The UK government introduced 47 

the renewable obligations (2002) and the Feed-in tariffs for electricity generation (2010), the 48 

Renewable Heat Incentives (2011) for heat production and the Renewable Transport Fuel Obligation 49 

(2007) for road transport fuel sales as financial incentives to meet the renewable energy targets.  50 

The production of energy from waste is reported (REA, 2011) to have a significant role in the 51 

renewable energy sector because alternative waste management options can reduce the environmental 52 

impact of waste disposal and produce economic opportunities and growth (Communities and local 53 

Government, 2011). Therefore, production of energy such as electricity and bio-fuels, from waste is 54 

eligible for financial support within the renewable schemes to actively promote growth in this sector.  55 

One possible route that is later analysed in this study, is the use of municipal solid waste (MSW) to 56 

produce renewable methane as this is also eligible for financial support. The production of renewable 57 

methane is reported to be a key factor for the UK to meet the 2020 and 2030 targets (DECC, 2011). 58 

National Grid (2014) reports that the production of biomethane/bio substitute natural gas (Bio-SNG) 59 

from renewables will become an important part of the future UK natural gas mix.  60 

However, when waste is treated in alternative technologies, such as those reported by Panepinto 61 

(2014) and Hu (2015), and a deviation from the waste hierarchy (Defra, 2011) is applied, Life Cycle 62 

Assessment (LCA) should be used to assess the environmental burdens of the developing alternatives 63 

(European Commission, 2003). Extensive LCA work is needed to assess the environmental 64 

performance of gas production from the renewable source of waste, including thermal and biological 65 
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technologies. In particular, the technological and environmental assessments of thermal technologies -66 

mainly gasification- treating MSW for Bio-SNG production are rarely analysed in literature, whereas 67 

more studies focus on the analysis biological processes treating biomass, including, for example, 68 

anaerobic degradation processes of the liquid fraction of pressed solid waste (Koók et al., 2016; 69 

Rózsenberszki et al., 2015). 70 

Very few studies report on the technological performance and energy efficiency of methane 71 

production from MSW gasification: for example, Sues et al. (2010) modelled different routes for the 72 

production of bio-fuels, including, between others, SNG from MSW and other feedstocks to identify 73 

the mass conversion and energy efficiency of each process. Moreover, Juraščík et al. (2010) and 74 

Vitasari et al. (2011) presented the analysis of the energy efficiency of SNG production from wood 75 

gasification. 76 

To the authors’ knowledge, no studies report on environmental assessment of thermal technologies for 77 

methane production from the entire fraction of municipal waste. Conversely, wood and agricultural 78 

biomass (Felder and Dones, 2007; Hacatoglu et al., 2010; Pucker et al., 2012; Steubing et al., 2011) 79 

and also manure (Luterbacher et al., 2009) treated in gasification technologies are usually considered. 80 

For wood waste, Felder and Dones (2007) and Steubing et al. (2011) showed that the impact of the 81 

entire life cycle of the SNG process, from wood growth to heat and electricity production, was mainly 82 

due to the SNG production stage: the low overall chain efficiency of the SNG production process, 83 

resulting from additional processing, and the need for substantial energy for gas compression, limited 84 

the performance of the SNG system when compared with fossil alternatives. 85 

Furthermore, many LCA studies on waste management assess the environmental impact of a single 86 

technology only, either biological (anaerobic digestion) (Boldrin et al., 2011; Evangelisti et al., 2014a, 87 

2014b; Lundie and Peters, 2005; Mezzullo et al., 2013) or thermal (Consonni et al., 2005a, 2005b; 88 

Evangelisti et al., 2015) and accordingly a single feedstock and product is analysed. Conversely, 89 

Hospido et al. (2005) analysed the environmental impacts associated with disposal of sewage sludge 90 

through anaerobic digestion or thermal processes but only pyrolysis and incineration were considered. 91 

This study presents the LCA of an advanced novel thermal technology treating the entire fraction of 92 

MSW for production of methane. Waste is first transformed into a clean syngas in an advanced dual 93 
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stage gasification and plasma technology (Evangelisti et al., 2015); then, methane is produced using 94 

the technologies of water gas shift and methanation. Those two technologies are already widely used 95 

in industry, for example, for production of hydrogen from fossil resources and ammonia (Appl, 2000; 96 

Boll et al., 2000) but they have never been previously proven for the production of methane from 97 

MSW.  98 

This technology is compared to biological alternatives including i) mechanical pre-treatment of MSW 99 

associated with the anaerobic digestion of the organic fraction and landfill/incineration of residual 100 

waste; ii) anaerobic digestion of source separated waste and landfill/incineration of residual waste. 101 

Two different perspectives are analysed in this study: a waste management and an energy production 102 

perspective, where two different functional units are used, 1 kg of waste treated and 1 MJ of gas 103 

produced, respectively. For each perspective (1kg of MSW and 1 MJ of methane produced), the 104 

comparison is firstly performed considering the current UK energy mix and then extended to include 105 

future energy mix scenarios in the UK.  106 

To the authors’ knowledge, this is the first paper which attempts to analyse the impact of developing 107 

thermal and biological systems treating MSW for renewable methane production in the context of 108 

future energy scenarios. This work, focusing on Bio-SNG production from waste and future energy 109 

mixes, complements and expands previous work by Evangelisti et al. (2015) which focused solely on 110 

the production of electricity from waste in the current energy mix framework.  111 

Furthermore, it is worth emphasizing that whilst many studies dealing with the environmental impact 112 

of waste to energy systems often analyse only the greenhouse gas emissions (Astrup et al., 2009; 113 

Mohareb et al., 2008; Tan et al., 2014; Zhao et al., 2009), this study presents a complete 114 

environmental assessment including a wide range of environmental impacts. 115 

1.2 LCA methodology 116 

Life cycle assessment is one of the most developed and widely used environmental methodology for 117 

comparing alternative processes or services. Life cycle assessment systematically analyses the entire 118 

life cycle of goods and services from raw material extraction to the product final disposal, including 119 

manufacturing, transport, use, re-use, maintenance and recycling, i.e. all flows to and from nature are 120 

assessed under a ‘cradle to grave’ perspective (Baumann and Tillman, 2004). Moreover, it helps to 121 
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determine the ‘‘hot spots’’ in the system, that are those activities that have the most significant 122 

environmental impact and should be improved as the first priority, thus enabling identification of 123 

more environmentally sustainable options (Clift, 2006).  124 

The LCA methodology consists a four very distinct phases. In the goal and scope definition the 125 

purpose of the study is primarily defined but also the following points should be addressed: i)what 126 

political or technical decision will depend on the results of the study; ii)what are the system 127 

boundaries for the study iii) what is the basis for comparison between different alternatives (i.e. which 128 

is the functional unit). During the inventory phase a life-cycle model of the product of interest is built 129 

up and all the environmentally relevant inputs and outputs of the process are listed. The inputs and 130 

outputs of each unit operation in the model are quantified and identified as either resource use or 131 

emissions (emissions to soil, water and air). In the impact assessment phase the energy and mass 132 

flows are translated into potential impacts (referred to as environmental indicators) to the 133 

environment. According to its mass flow each environmental intervention is transformed into an 134 

environmental burden through a common unit, specific for the environmental category. Normalization 135 

and weightening are also included in this phase. The last phase includes the analysis of the results and 136 

the assessment of the conclusions based on the points reported in the goal and scope definition. 137 

In LCA, a multifunctional process is defined as an activity that fulfils more than one function, such as 138 

a waste management process dealing with waste and generating energy (Ekvall and Finnveden, 2001). 139 

It is then necessary to find a rational basis for allocating the environmental burdens between the 140 

functions. The problem of allocation in LCA has been the topic of much debate (Clift et al., 2000; 141 

Heijungs and Guinée, 2007). The ISO standards (ISO 14040, 2006) recommend that the 142 

environmental benefits of recovered resources should be accounted for by broadening the system 143 

boundaries to include the avoided burdens of conventional production (Eriksson et al., 2007). This 144 

approach is applied in this study.  145 

Following the methodological approach of Clift et al. (2000) a distinction is made between 146 

Foreground and Background, considering the former as ‘the set of processes whose selection or mode 147 

of operation is affected directly by decisions based on the study’ and the latter as ‘all other processes 148 

which interact with the Foreground, usually by supplying or receiving material or energy’. The 149 
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burdens are evaluated under three categories (Clift et al., 2000): direct burdens, associated with the 150 

use phase of the process/service; indirect burdens, due to upstream and downstream processes (e.g. 151 

energy provision for electricity or diesel for transportation); and avoided burdens associated with 152 

products or services supplied by the process (e.g. energy or secondary material produced by the 153 

system).  154 

When translating the inventory data in environmental impacts, two general approaches are available, 155 

the so-called mid-point or end-point (Clift, 2013). In this study the mid-point approach is used and 156 

inputs are expressed in terms of their contribution to a set of impact mid-point categories. The 157 

standard mid-point impacts used in this study are those defined by Guinée (2002) and are described in 158 

the supplementary information. The study focusses on six impact categories which are found to be 159 

most significant for the comparison between the different processes, as shown in the normalized 160 

results presented in the Supplementary Information. 161 

Currently more than thirty software packages exist to perform LCA analysis, with differing scope and 162 

capacity: some are specific for certain applications, while others have been directly developed by 163 

industrial organisations (Manfredi and Pant, 2011). In this study GaBi 6 has been used (Thinkstep, 164 

2015). GaBi 6 contains databases developed by Thinkstep, it incorporates industry organisations’ 165 

databases (e.g. Plastics Europe, Aluminium producers, etc.) and also regional and national databases 166 

(e.g. Ecoinvent, Japan database, US database, etc.).  167 

Further information on the methodology is reported in the supplementary information. 168 

2. Goals and Scope Definition 169 

2.1. System boundaries  170 

The analysis starts from the waste stream (referred to as MSW in this study) exiting a material 171 

recovery facility (MRF), through to the production of methane suitable for grid injection according to 172 

the Gas Safety Management Regulation (GSMR, 1996). The life cycle of the waste streams separated 173 

from the residual waste is omitted in this assessment as assumed to be identical in all scenarios 174 

investigated.  175 

We analyse 5 different scenarios, as shown in Figure 1: 176 
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1. In scenario 1 (S.1), the residual waste is assumed to be mechanically sorted and then the 177 

centrally separated organic fraction is biologically treated in an anaerobic digestion plant at 178 

the same site. The separated non biodegradable waste is partially recycled and partially sent to 179 

incineration as later specified.  180 

2. Scenario 2 (S.2) is the same as scenario 1 but the separated waste is assumed to be partially 181 

recycled and partially sent to landfill as later specified. 182 

3. In scenario 3 (S.3) we account for a higher source separation of bio-degradable waste and 183 

therefore the organic fine fraction of the residual waste is assumed to be source separated and 184 

treated in an AD plant whereas the rest is sent directly to incineration without further 185 

treatment. 186 

4. Scenario 4 (S.4) is the same as scenario 3 but residual waste is assumed to be sent to landfill.  187 

5. In scenario 5 (S.5) the waste is treated in an advanced thermal treatment technology, such as a 188 

two stage gasification and plasma process, based on a technology developed by industrials 189 

(Advanced Plasma Power, 2015).  190 

Figure 1 shows the system boundary of this analysis and identifies the different scenarios, where 191 

circles identify flows whereas squares identify processes. Indirect activities of the supply chains and 192 

waste disposal processes constitute the background, whereas the scenarios investigated are the 193 

foreground. Avoided burdens are allocated to valuable substances production/recovery and emissions 194 

and residual waste material disposal are included in the assessment. 195 

The main goals of this work are: 196 

 To compare the environmental burdens of the different scenarios analysed and identify the hot 197 

spots. 198 

 To compare the environmental burdens of the scenarios analysed according to the UK future 199 

foreseen energy mixes, till 2035 (National Grid, 2014).  200 

 Assess the impact of the functional unit on the results according to two different approaches, 201 

the methane recovery and the waste management perspectives. 202 
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 To compare the environmental impacts of the anaerobic digestion process treating source-203 

separated waste against centrally separated waste. 204 

2.2. Functional Unit 205 

Two different perspectives are analysed in this work. Hence, the results are reported according to the 206 

functional unit of 1 kg of MSW and 1 MJ of methane produced. When 1 kg of MSW is chosen as 207 

functional unit, the targeted question that the analysis is trying to answer is ‘what is the best waste 208 

management option given a certain amount of MSW?’ On the other hand, when 1 MJ of clean gas 209 

produced is chosen as functional unit, the study is trying to answer the following question ‘what is the 210 

best technology for the production of a given amount of methane?’ A key factor that differentiates the 211 

technologies analysed is the efficiency in methane production, Table 1 reports the yield in methane 212 

production for the scenarios analysed.  213 

3. Life Cycle Inventory 214 

3.1. Life Cycle assessment models  215 

The inventories of the processes analysed have been collected for commercial scale plants. Both the 216 

primary and secondary data used are regionalized and refer specifically to the UK. Key inventory data 217 

are reported in Table 2 and further analysed in the following paragraphs and in the supplementary 218 

data. The models for incineration and landfill have been built according to GaBi database (Thinkstep, 219 

2015) and more information on those two processes and transport of waste is reported in the 220 

supplementary data. 221 

The residual waste composition and its heating value are reported in Table 3; they are based on typical 222 

waste collected in south-west England. The same waste composition is assumed for all the scenarios 223 

analyzed. 224 

3.1.1. System expansion  225 

In scenarios 1, 2 and 5 the metals (ferrous and non-ferrous) are mechanically separated from MSW 226 

and recovered for future reprocessing and final sale as recycled metals. Therefore, avoided burdens 227 

are allocated to those processes according to the models already reported in Evangelisti et al. (2015).  228 

In scenario 1 and 3 electricity is recovered from the incineration of waste; in scenario 5, electricity is 229 

produced from the off gas of the Bio-SNG upgrading; in scenarios 2 and 4 electricity is recovered 230 
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from captured landfill gas. Avoided burdens are allocated to the production of electricity based on an 231 

average mix of technology in the UK (Thinkstep, 2015). 232 

Avoided burdens have also been allocated to the production of upgraded methane because this is 233 

assumed to be injected into the grid and to substitute the UK natural gas mix (Thinkstep, 2015). 234 

In paragraph 4.4, the current energy mix is substituted with future energy shares according to National 235 

Grid (2014). 236 

3.2. Anaerobic Digestion of centrally separated waste (S.1 and S.2) 237 

Archer et al. (2005) and Guinan et al. (2008) refer to one particular layout of the MBT where no 238 

aerobic composting is used but the process is designed to deliver biogas using AD. AD cannot be 239 

directly applied to the entire fraction of MSW, therefore a mechanical treatment is needed to apply 240 

AD only to the organic fraction of the centrally separated MSW. In this case, extensive 241 

physical/mechanical separation and pre-treatment is always necessary prior to digestion (Monson et 242 

al., 2007).  243 

Many LCA studies analyse the impact of mechanical biological waste treatment (MBT) where the 244 

biological process is aerobic composting (Arena et al., 2003; Buttol et al., 2007; Consonni et al., 245 

2005a, 2005b; Esmaeil et al., 2012; Hong et al., 2006). Conversely, very limited work has been done 246 

on the environmental impact of MBT processes where the biological treatment is AD. Some report on 247 

the software tools that can be used to calculate the burden of this process (den Boer et al., 2007); few 248 

others report the results of the greenhouse gas impact (Baddeley et al., 2010) but none performs a 249 

comprehensive LCA study from cradle to grave, looking at all different environmental impacts. 250 

Literature data have been used to build the models for scenarios 1 and 2 as referred in Table 2; the 251 

high level diagrams of those scenarios are reported in Figure 2. The outputs of the mechanical 252 

separation are assumed to be i) organic fraction suitable for biological treatment in an AD plant; ii) 253 

recovered metals suitable for reprocessing and sales in the market; iii) inert material used as landfill 254 

cover; and iv) residual waste containing the remaining not separated MSW fractions sent either to 255 

incineration (scenario 1) or landfill (scenario 2). The unsorted remaining fractions are not transformed 256 

into RDF but are directly sent to the disposal facilities; no pelletizing is assumed as also reported in 257 

Consonni et al. (2005b). Defra (2013) reports that recyclables (such as plastic and card) derived from 258 
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the various MBT processes are typically of a lower quality than those derived from a separate 259 

household recyclate collection system and have a lower potential for high value markets. Therefore, 260 

for many mechanical separation systems, metals (ferrous and non-ferrous) are the only recyclates 261 

always extracted (as assumed in this study). The energy consumption for the mechanical separation of 262 

waste is based on literature data (Consonni et al., 2005b; Defra, 2013; Montejo et al., 2013).  263 

Six operations are identified in the AD process (Figure 3): i) pre-treatment; ii) anaerobic digestion; iii) 264 

water and acids removal; iv) upgrading of the biogas in a PSA system; v) disposal of digestate to 265 

incineration. The characteristics of each part and the assumptions used in the LCA models based on 266 

literature data are specified in the Table 2 and supplementary data.  267 

3.3. Anaerobic Digestion of source separated waste (S.3 and S.4) 268 

When planning for a sustainable new settlement, there is potential for increasing the sorting 269 

efficiencies (Slagstad and Brattebø, 2012). In scenarios 3 and 4 we assume that the source separation 270 

of bio-degradable waste is higher than that of scenario 1 and 2 and this amount of waste is treated in 271 

an AD plant. The residual waste is assumed to be sent to incineration (scenario 3) or landfill (scenario 272 

4). The high level diagrams of S.3 and S.4 are reported in Figure 3. 273 

The substrate of the anaerobic digestion is kitchen source separated waste, its composition is reported 274 

in Banks et al., (2011); this is the substrate that determines the highest yield in biogas production. No 275 

card and paper are assumed to be anaerobically digested. As the waste is separated at source, the 276 

amount of mechanical separation and pre-treatment required (and thus the complexity and cost of the 277 

system) is reduced, although some mechanical separation is always necessary. 278 

The model of AD for scenarios 3 and 4 is the same as the model used for scenario 1 and 2 except for 279 

the assumptions regarding the biogas yield and the digestate use. The raw biogas production has been 280 

assumed to be 0.14 Nm3 per kg of bio-degradable fraction of MSW (wt%), based on literature data 281 

(Banks et al., 2011; Evangelisti et al., 2014a; Moller et al., 2007; Robertson et al., 2010). The whole 282 

digestate is separated in liquor and fibre as standard practice reported in Wrap (2012) and the 283 

analysed separation method is physical (Wrap, 2010). The liquor separated from the whole digestate 284 

in the dewatering process is used as fertilizer, whereas the fibres are sent to incineration as inert 285 

material (Wrap, 2012). The system boundaries are expanded to include the avoided burdens allocated 286 
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to the substitution of chemical fertilisers, and to the amount of carbon sequestered in the soil when the 287 

digestate is used as chemical fertilizer (Moller et al., 2007). The emissions due to the organic 288 

fertilizers when those are on the soil are also included in the inventory. Further assumptions regarding 289 

the model are specified in Table 2 and in the supplementary data. 290 

3.4. Advanced thermal treatment: dual stage gasification and plasma process (S.5) 291 

The dual stage gasification and plasma technology for Bio-SNG production from MSW is a novel 292 

advanced thermal conversion technology currently under development (Advanced Plasma Power, 293 

2015; Chapman et al., 2014; Ray et al., 2012; Taylor and Chapman, 2012; Taylor et al., 2013). The 294 

high level diagram of this process is shown in Figure 4.  295 

The advanced technology is a highly flexible two-stage thermal process, capable of treating a wide 296 

range of organic and inorganic wastes including Municipal Solid Waste and Refuse Derived Fuel 297 

(RDF). Pre-treatment of the received waste includes shredding, drying and mechanical metals 298 

recovery, sold as recyclates. The core of this technology comprises a two-stage thermal treatment 299 

system. The fluidised bed gasifier using oxy-steam converts the prepared non–pelletized RDF to a raw 300 

syngas containing significant levels of char, ash, tars and other liquid organic contaminants. This gas 301 

stream, together with the char and ash product from the gasifier, is then treated in a high temperature 302 

plasma converter unit. It efficiently cracks problematic tars in the raw syngas to produce a reformed 303 

quality synthetic gas. The inorganic ash fraction from the gasifier is vitrified in the plasma converter 304 

unit to produce a dense, stable vitrified product, which can be used as aggregate in road construction. 305 

The syngas, after cooling, Air Pollution Control removal (APC), tertiary cleaning of the acid gases 306 

and further polishing in a guard bed, is suitable for catalytic conversion to Bio Substitute Natural Gas 307 

(Bio-SNG). A high temperature water-gas shift adjusts the stoichiometric ratio H2/CO in the syngas to 308 

around 3:1, as required at the methanator stage. After the final polishing in a ZnO guard bed, the 309 

compressed gas is injected into the methanator reactor where the raw Bio-SNG is produced. This is 310 

upgraded in a Pressure Swing Adsorber (PSA) system and injected into the grid. The low quality 311 

combustible gas (mainly mix of CH4 , H2 and inert) recovered in the PSA system is used to produce 312 

electricity and the off gas is flared and emitted to the environment. The heat produced through the 313 

process which is not used for serving the internal requirement, is assumed to be used for electricity 314 
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production in a steam turbine. The solid fuel preparation, syngas generator and syngas refining units 315 

(see Figure 4) are modelled as reported in Evangelisti et al. (2015). Further inventory data for the 316 

LCA model of this process are based on experimental and modelling data provided by industrial 317 

developers and are reported in Tables 2-3 and in the supplementary data. 318 

4. Results and discussions 319 

In this section, the scenarios analysed are compared according to the two different approaches 320 

described in 2.2. Generally, the results of a LCA analysis do not draw a unique guideline for the 321 

environmental problems analysed; conversely, given results, analysed under different perspectives, 322 

can propose different solutions and interpretations for the same system. It will be shown that multiple 323 

and sometimes controversial conclusions and guidelines can be drawn depending on the approached 324 

problem. The perspectives analysed will mainly depend on the system boundary considered and on 325 

the environmental problems tackled; the results have to be read and analysed according to a specific 326 

context. The functions that the specific systems deliver are other key aspects for the interpretation of 327 

the results; these are strictly linked with the chosen functional unit of the system and the goals of the 328 

study. 329 

4.1 What is the best waste management option for waste disposal? 330 

The following results are reported according to the functional unit of 1 kg of MSW. Therefore, the 331 

approached perspective is looking at the problem of waste management and disposal. 332 

Figure 5 shows a comparison of the environmental impacts associated with the five scenarios 333 

analysed for 1 kg of MSW as functional unit. These results have been obtained using the current 334 

energy mix of the UK in the LCA models of indirect and avoided burdens. Only significant results are 335 

shown here, although the analysis was performed for more indicators as shown in the supplementary 336 

data where normalised results are presented. It is not possible to identify a unique best scenario as the 337 

aspects influencing each indicator are different as explained in the following paragraphs. However, 338 

the scenarios where the metal recovery is considered show a better environmental performance for all 339 

the indicators analysed, except FAETP and ODP as shown in Figure 5. Those two latter indicators are 340 

driven by other factors as reported in the discussion of the results. 341 

4.1.1 Comparison of scenarios 1, 3 and 5 342 
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Figure 5 shows, among others, the environmental impacts of scenarios 1, 3 and 5 for 1 kg of MSW. 343 

The results do not show a unique trend for all the indicators analyzed. 344 

GWP. Figure 5 shows that the dual stage process is the less favourable option. The value of the GWP 345 

for each scenario primarily depends on the CO2 emissions at the stack and the avoided burdens 346 

allocated to the substitution of valuable products- that also means the efficiency in electricity and 347 

renewable methane production. As the waste treated in all scenarios has the same carbon composition, 348 

the avoided burdens mainly determine the relative balance of the results. The avoided burdens 349 

allocated to the production of electricity is contributing the most to the total GWP also when they are 350 

compared to the avoided burdens allocated to methane production and metal recycling. This is due to 351 

the current highly carbonised electricity mix in the UK: the production of 1 kWh of the UK electricity 352 

mix determines 0.556 kg of CO2 eq. whereas the production of 1 kWh of fossil methane determines 353 

0.0014 kg of CO2 eq. However, the production of Bio-SNG through thermal waste processes is not 354 

currently a fully developed technology but it will significantly contribute to the UK energy mix in 355 

future energy scenarios (National Grid, 2014). The latter will see an increased decarbonisation of the 356 

grid thanks to the introduction of renewable technologies and an increased footprint of the natural gas 357 

mix due to the introduction of LNG and possibly shale gas. Hence, the thermal production of Bio-358 

SNG from waste might represent a valid alternative to decrease the burden of the UK natural gas grid 359 

mix when the analysis is performed according future energy mix (see paragraph 4.4). 360 

AP. The AP (Figure 5) of scenarios 1 and 3 are both negative due to the allocation of avoided burdens 361 

to the recovery of metals and electricity production in the incineration processes. The indirect burdens 362 

related to the electricity recovery predominantly influence this indicator, whereas the avoided burdens 363 

allocated to methane production have a minor impact on the results (as also shown for the GWP). In 364 

scenario 5 the amount of electricity produced is smaller than the amount produced in scenario 1 and 3 365 

and therefore the higher yield in methane production does not offset the positive burdens of the 366 

process. Scenario 1 shows an AP almost 3.5 times lower than the AP of scenario 3 even though its 367 

yield in methane is lower. This is due to the avoided burdens allocated to metal recovery in scenario 1 368 

and not in scenario 3. 369 
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ADP. Figure 5 shows that the best option to avoid the depletion of fossil resources is the dual stage 370 

gasification and plasma process. The ADP of the advanced thermal process is 36% and 40% lower 371 

than the ADP of scenario 1 and 3, respectively. This is due to the higher yield in methane production 372 

per kg of MSW and consequently to the higher avoided burdens for methane production allocated to 373 

this process. For the ADP, hence, the aspect that determines the trend of the results is the avoided 374 

burdens allocated to the production of methane. 375 

FAETP. FAETP (Figure 5) represents the most significant results within all the toxicity indicators and 376 

it has hence been chosen for discussion. Scenario 3 only shows a negative burden; this is due to the 377 

allocation of avoided burdens to the use of digestate as organic fertilizer substituting chemical 378 

fertilizer. In many LCA studies on AD (Boldrin et al., 2011; Bruun et al., 2006; Evangelisti et al., 379 

2014a; Moller et al., 2007) the allocation of avoided burdens for chemical fertilizer substitution is 380 

considered only for the GWP. Conversely, all the indicators analyzed in this study account for these 381 

avoided burdens. Our results show how some indicators might be driven by the avoided burdens 382 

allocated to the chemical fertilizer substitution, hence for a complete LCA those impacts must be 383 

included in the study. The FAETP value of 2.29E-2 kg of DCB Eq. allocated to scenario 1 (Figure 5 ) 384 

is 100% due to the incineration of the digestate and its consequent emissions to air, water and soil 385 

through flue gas, bottom ash and APC residues disposal. Conversely, for scenario 5 the value of 386 

4.73E-3 kg of DCB Eq. is due to upstream indirect emissions allocated to the production of chemicals 387 

used in the tertiary cleaning of the syngas. 388 

EP. The significant difference in the EP (Figure 5) results -3.67E-4, 4.6E-4 and 7.79E-5 kg of 389 

phosphate Eq. for scenarios 1, 3 and 5, respectively- is mainly due to the difference in the emissions 390 

to the environment of the N compounds (see Table 4). Scenario 5 performs better than all other 391 

scenarios because the advanced thermal treatment causes lower emissions of NH3. The disposal of 392 

digestate (either to incineration or as organic fertilizer for scenario 1 and 3, respectively) contributes 393 

almost wholly to this indicator. Further explanation is reported in the hot spot analysis of the 394 

anaerobic digestion.  395 
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ODP. Scenario 3 shows the highest ODP (see Figure 5) among S.1, S.3 and S.5 because of the lack of 396 

avoided burden allocated to the metal recovery in scenario 3. S.5 performs better than all other 397 

scenarios thanks to lower emissions. 398 

4.1.2. Comparison scenarios 2, 4 and 5 399 

Figure 5 also reports the environmental results for scenarios 2 and 4 for 1 kg of MSW. Even if the 400 

numerical results are not the same as scenarios 1 and 3, the relative trend of S.2, S.4 and S.5 is the 401 

same as S.1, S,3 and S.5 for the ADP, AP, EP and FAETP. For these indicators, the different 402 

environmental burdens allocated to scenarios 2 and 4 due to the landfill instead of incineration do not 403 

alter the preferred environmental choice. On the other hand GWP and ODP do not show the same 404 

trend of the results.  405 

GWP. When considering scenarios 1, 3 and 5 (Figure 5) the best choice to treat 1 kg of waste is 406 

scenario 1 (even if this scenario is not optimized for methane production, it is the one that determines 407 

the lowest environmental impact due to the avoided burdens allocated to electricity and metal 408 

production). Conversely, when considering scenarios 2, 4 and 5 (Figure 5), the best option is shown to 409 

be scenario 5. The methane that comes from the landfill gas released to atmosphere (which is 410 

primarily methane and carbon dioxide) is the main contributor to GWP for scenarios 2 and 4 and this 411 

gives the poorest environmental performance. For scenario 5 the main contribution to GWP is instead 412 

coming from the off gases released from the upgrading system (which is primarily carbon dioxide). 413 

ODP. This is the only indicator where S.2 and S.4 perform both better than S.1 and S.3. This is due to 414 

the lower contribution of indirect chemical productions for S.2 and S.4. 415 

ADP, AP and GWP of scenario 1 and 3 are worse than the same indicators for scenario 2 and 4 as 416 

expected (landfill is reported to have a higher environmental impact than incineration mainly because 417 

of the lower amount of energy recovered and higher emissions). However, EP and FEATP are shown 418 

to be the same for scenarios 1, 2, 3 and 4. The reason for this has to be found in the hot spot analysis 419 

of those processes (as reported in paragraph 4.4). The main contributor to the EP and FAETP is due to 420 

the digestate disposal. Therefore, the other impacts of the processes, such as landfill, incineration or 421 

recovery of valuable substances become negligible and those do not affect the results.  422 

4.2 What is the best technology for production of renewable methane? 423 
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The following results are reported according to the functional unit of 1 MJ of produced methane. In 424 

this case, the analysis is focusing on the aspect of renewable energy production using different 425 

technologies. The trend of the results is the same as that of Figure 5 for all the indicators, except for 426 

the ADP and GWP (see Figure 6).  427 

GWP. A change in the functional unit determines an inversion of the results for the GWP, in this case 428 

Figure 5 shows that the dual stage process is the worst option whereas this process is shown to be the 429 

preferred option in Figure 6 among the thermal processes (for the ADP it is the opposite). When the 430 

functional unit is assumed to be 1 MJ of methane injected into the grid the avoided burdens allocated 431 

to the production of methane are the same for all processes (Figure 6). The yield of methane 432 

production for the dual stage process is the highest and this corresponds to the lowest amount of 433 

MSW treated and therefore lowest direct burden of CO2 for this process (emissions of CO2 to the 434 

environment are based on the amount and composition of waste). For this case the avoided burdens 435 

allocated to the electricity and metal recovery do not have a significant influence on the results.  436 

ADP. Figure 5 shows that the best option among the thermal treatments (S.1, S.3, S.5) is the dual 437 

stage process whereas Figure 6 shows that this process is the worst environmental scenario among the 438 

thermal processes. Given 1 MJ as functional unit, the avoid burdens allocated to the production of the 439 

methane injected into the grid are the same for all the scenarios analyzed and the aspects that prevail 440 

on the results are the avoided burdens allocated to the electricity production and metal recovery. 441 

Given a fixed amount of methane, different yields in methane production (as reported in Table 1) 442 

determine different amounts of MSW treated in the different processes. For 1 MJ of upgraded 443 

methane, the smallest amount is treated in the advanced thermal treatment process, 0.2 kg (as the yield 444 

in methane of this process is the highest); lower avoided burdens (compared to the avoided burden of 445 

scenarios 1-3) are, therefore, allocated to the metal’s recovery and to the production of electricity 446 

from the off gas in scenario 1. The amount of waste treated in scenario 1, 3 is higher-2.8 kg and 1.6 447 

kg, respectively. This results in higher avoided burdens allocated to the electricity recovery from the 448 

incineration of residual fractions in scenarios 1-3 and also in higher avoided burden allocated to the 449 

recovery of metal in scenario 1.  450 
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The other indicators do not show an inversion in the results when 1 MJ of methane is considered as 451 

functional unit instead of 1 kg of MSW. This is because the avoided burdens allocated to the recovery 452 

of methane, electricity and metal are balanced and do not change the relative effect when the 453 

functional unit is changed. 454 

Those results demonstrate how the choice of the functional unit is a key point of a LCA analysis as 455 

this may change the trend of the results. 456 

4.3. UK future energy scenarios of electricity and natural gas mix 457 

The marginal energy supply (in particular electricity supply), is reported to strongly affect the results 458 

of LCA analysis (Kløverpris et al., 2008; Moora and Lahtvee, 2009) and hence, a study of the 459 

environmental burden of the scenarios analysed have been performed according to different energy 460 

technologies for indirect and avoided activities.  461 

The UK energy mixes (electricity mix and natural gas mix) are evolving towards renewables. National 462 

Grid (2014) has foreseen possible future energy scenarios for the UK and has undertaken a detailed 463 

analysis to 2035 for each scenario. Four scenarios have been identified by national grid: i) gone green; 464 

ii) slow progression; iii) no progression; iv) low carbon life (see supplementary data for further 465 

explanation on these scenarios). According to these four scenarios, National Grid (2014) reports the 466 

mix of technologies used in the UK to produce electricity and natural gas each year till 2035 (see 467 

supplementary data). The environmental burdens of technology mix for these different energy 468 

scenarios, according to the data reported by National Grid (2014), have been modelled using Gabi 469 

database (Thinkstep, 2015).  470 

The aim of this analysis is to compare scenarios 1, 3 and 5 between 2014 and 2035 in the UK, 471 

according to the developing energy (both electricity and gas) mix. Therefore, the evolution in time of 472 

the environmental burdens of these processes have been calculated according to the predictions of 473 

National Grid (2014) -different energy mixes have been accounted for the energy requirements and 474 

avoided burdens for scenarios 1, 3 and 5. The modelling has been performed for the two different 475 

functional units, 1 kg of MSW treated and 1 MJ of methane produced. 476 

In the first instance, only future electricity mix scenarios have been included while both electricity 477 

and natural gas future mixes have been included in a second time. The two cases do not show 478 
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significantly different results, highlighting how a change in the electricity technology mix determines 479 

a higher variation of the results than a change of the natural gas technology mix. Only the coupled 480 

results regarding a change in natural gas mix and electricity mix are reported. 481 

Figure 7 shows the GWPs of scenarios 1, 3, and 5 till 2035 for the two opposite possibilities analysed 482 

by National Grid (gone green and no progression, the other scenarios are reported in the 483 

supplementary information), per 1 kg of MSW as functional unit. The increase of the share of cleaner 484 

electricity sources in the energy mixes determines an increase of the GWP for scenario 1 and 3. This 485 

is due to lower avoided burdens allocated to the production of electricity and hence higher total 486 

environmental burdens. On the another hand, scenario 5 decreases its environmental burden because 487 

of a lower influence of the electricity mix and higher environmental burdens allocated to the 488 

production of methane (the natural gas mix increases its environmental burden because of a higher use 489 

of LNG and shale gas). The same trend is depicted for all scenarios predicted by National Grid but the 490 

GWPs of scenarios 1, 3 and 5 converge most closely in the gone green than in the no progression 491 

scenario. High economic growth and support to sustainability determines these results. For all 492 

scenarios, from the year 2020-2021 the GWPs of all three processes become almost parallel, slowly 493 

converging toward the centre. The inversion of the results (between scenarios 5, 1 and 3) is not seen 494 

before 2035. The GWP of the electricity grid which would determine an inversion of the results is 495 

calculated to be 0.1 kg of CO2 Eq. per kwh of electricity. This can be attained, for example, with a 496 

strong increase of the nuclear power in the grid mix, to greater than a 40% share. When the inversion 497 

of the results is attained, the GWP impact of producing methane from MSW would be less than the 498 

GWP of producing electricity.  499 

Given 1 kg of MSW as functional unit, if the government policies prioritise sustainability within an 500 

increased economic growth, the evolving energy mixes determine a change in the environmental 501 

burden of the processes analysed.  502 

Figure 7 also shows the GWP of the technologies analysed till 2035 assuming 1 MJ of methane as 503 

functional unit. In this case, the results for the GWP of S.1, S.3 and S.5 for the no progression and 504 

gone green scenarios show no change till 2035. This is because when using 1 MJ of methane as 505 

functional unit, the main contribution to the GWPS for the three alternatives is the avoided burden 506 
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allocated to methane. Fixing 1MJ of methane produced, it means the same avoided burdens for 507 

methane production are allocated to all three technologies; the avoided burdens allocated to the 508 

electricity have a minor environmental impact on the total score of the results and therefore no 509 

significant variation of the results is shown (the results for the other cases are in the supplementary 510 

information).  511 

However, the key outcome from this analysis is to show that over the next 20-30 years the production 512 

of renewable methane is preferable to renewable electricity, no matter which approach is taken in the 513 

analysis. 514 

4.4. Hot spot analysis of the Anaerobic Digestion processes 515 

To better analyse the implications of performing the AD on centrally or source separated organic 516 

waste, a hot spot analysis of the AD for the two cases is also performed. In this assessment, all the 517 

processes upstream of the biodegradable waste pre-treatment are not included, as the focus is only on 518 

the differences between the two AD processes (see Figures 3 and 4).  519 

Results in Figure 8 and 9 are reported for 1 kg of MSW.  520 

 Pre-treatment and digestion (Figure 8). The pre-treatments and digestion sections of both 521 

types of AD determine a positive contribution to all the indicators also because no avoided 522 

burdens are allocated to them. In both cases, this section mainly influences the indicators that 523 

strongly depend on the electricity consumption (ADP, AP, GWP) because the main 524 

environmental burdens are determined by indirect activities. For example, the AP of both 525 

processes is mainly due to the electricity consumptions. Conversely, the GWP is also due to 526 

the direct methane slips from the digesters accounted in the model. Pre-treatment and digester 527 

of the two types of AD are shown to have the same environmental impacts because the 528 

correlations to calculate the electricity requirements in the model are based on the amount of 529 

biodegradable waste in input (assumed to be the same in the two cases). 530 

 Upgrading. Both upgrading processes show a highly negative ADP (Figure 8) (in both cases 531 

the negative value offsets the positive contributions) thanks to the avoided burdens allocated 532 

to the methane injected into the grid. However, the avoided ADP allocated to the AD of 533 

source separated waste is 83% lower than the ADP allocated to the AD of centrally separated 534 
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waste (this is due to the difference in methane yield, see Table 1). The other indicators do not 535 

show any negative impact allocated to the upgrading processes because the positive burdens 536 

due to the energy consumptions offset the negative values. The upgrading of the AD of source 537 

separated waste shows an AP 85% higher than that of an equivalent process operating on 538 

centrally separated waste: this is due to the higher yield in methane that determines also the 539 

higher energy consumption.  540 

The burdens allocated to the digestate use are always shown to be positive (except for the FAETP of 541 

the source separated process). 542 

 Digestate use – source separated waste. In the AD model of source separated waste, part of 543 

the nutrient content of the digestate is assumed to be lost after the spreading of the organic 544 

fertilizer on the ground. The avoided burdens of the digestate use are calculated as the 545 

difference of the positive burdens due to the application of the organic fertilizer to the soils 546 

(emissions due to the leaching, evaporation, run off, etc.) and the avoided burdens allocated to 547 

the substitution of the chemical fertilizers. Leaching of N into the soils, evaporation and run 548 

off constitute heavily polluting emission of nutrients to environment and, for example, this is 549 

the main driver for the EP. For this indicator, the emissions of the organic fertilizer after 550 

spreading, are higher than the avoided burden allocated to the substitution of chemical 551 

fertilizers. The emissions occur also in the case where chemical fertilizers are used but in the 552 

LCA model the difference between the emission due to the organic fertilizer and the chemical 553 

fertilizer are included. The opposite result is shown for the FAETP; the avoided burdens 554 

allocated to chemical fertilizers offset the impact due to the emissions to environment. Hence, 555 

for this indicator the weight of the substitution of chemical fertiliser is higher. 556 

 Digestate use - centrally separated waste. In the case of AD applied to centrally separated 557 

waste the digestate is assumed to be co-incinerated with other waste. A mass balance 558 

indicates that the mass of nutrients in input to the incineration process needs to be found in 559 

the outputs as either emission to air or as ash. Therefore, those nutrients reach the 560 

environment and equally contribute to the EP. The same explanation can be applied to the 561 

ODP whereas the GWP is mainly due to the incineration of the fibres. 562 
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 GWP- direct, indirect and avoided contributions. Figure 9 shows the GWP of the two AD 563 

processes (from source separated and centrally separated waste, not including the processes 564 

that are upstream the biodegradable waste pre-treatment) and specify the contributions 565 

coming from direct, indirect and avoided activities. The process of AD from source separated 566 

waste determines a lower impact than the process of AD from centrally separated waste 567 

because of the higher yield in methane: 1.04E-1 and 1.12E-1 kg of CO2 Eq., respectively. 568 

However, the direct burden contributes around 47% to the total GWP, whereas for the process 569 

of AD from centrally separated, this percentage decreases to the 24%. This disparity in the 570 

results is due to higher methane yield and therefore higher direct emission of carbon dioxide 571 

from the upgrading. The total avoided burdens allocated to the AD of source separated waste 572 

are smaller than the avoided burdens allocated to the other process even if the yield in 573 

methane of the latter is lower: -1.94E-3 and -2.56E-3 kg of CO2 Eq., respectively. The reason 574 

for this is that the avoided burdens of the AD from source separated waste does not only 575 

include the production of methane but also the substitution of chemical fertilizer and the 576 

emissions due to the evaporation, leaching and run off of part of the digestate nutrients. The 577 

higher indirect burdens of the AD of centrally separated waste are due to the higher parasitic 578 

loads allocated to the pre-treatment and digestion. 579 

The electricity consumption for digestate dewatering in the AD process from source separated waste 580 

determines a negligible environmental burden to all indicators. 581 

5. Conclusions 582 

In this work we have analysed the environmental performances of conventional and advanced 583 

treatment technologies of MSW focusing on the Bio-SNG production. Five scenarios have been 584 

identified, the main processes being: Mechanical Treatment associated with Anaerobic Digestion of 585 

centrally separated organic waste and landfill/incineration of the residual waste; source separation of 586 

food waste with landfill/incineration of residual waste; and a dual stage advanced thermal treatment 587 

process. The model for the inventory has been built based on literature and industry data and a 588 

complete environmental analysis have been performed. Furthermore, for the 5 scenarios analysed, two 589 

different approaches were considered. One was looking at the best environmental technology for 590 
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treatment of waste, the other focused instead on the renewable methane production. This was reflected 591 

on the choice of the functional unit, 1 kg of MSW and 1 MJ of methane produced, respectively for the 592 

two approaches. A unique trend in all the results cannot be identified but each process performs 593 

differently depending on the indicators analyzed. Avoided burdens for energy production and direct 594 

emissions play the major role on the environmental burdens.  595 

When the problem of waste management is approached, for the GWP, it is currently better to produce 596 

electricity from waste over bio-methane/Bio-SNG (as a result of the current UK energy mix) but this 597 

is due to change for future energy scenarios. In fact, this work has also analysed the projection of 598 

GWP for the processes studied till 2035 accounting for future energy scenarios. Over this period of 599 

time, it is predicted that there will be a strong decrease in carbon emissions for the electricity mix 600 

compared to the natural gas mix. In the context of waste to energy, this will enhance those 601 

technologies that produce renewable methane at high efficiency compared to converting waste for 602 

electricity production. 603 

However, the functional unit was shown to be a key parameter for the overall trend of the results. In 604 

fact, when the problem of renewable energy production was tackled (functional unit 1 MJ of 605 

methane), the current GWP showed that the best option is the treatment of MSW in a dual stage 606 

advanced thermal treatment as a result of a higher efficiency in methane production. This trend is not 607 

due to change in the next future. 608 

A hot spot analysis was performed for the AD processes from source separated and centrally 609 

separated waste. The pre-treatment and digestion processes determine a positive contribution to all the 610 

indicators, showing that no avoided burdens are allocated to them; the main environmental burdens of 611 

the pre-treatment and digestion are determined by their energy consumptions. However, the GWP is 612 

mainly due to the methane slips from the digester. ADP is the only indicator showing avoided burdens 613 

allocated to the two upgrading processes. For the digestate use of AD of source separated waste, the 614 

majority of the indicators are shown to be positive (mainly the EP, ODP and AP). This is because 615 

once on the soil, the burden due to the run-off, evaporation and leaching of N compounds from the 616 

organic fertilizer are higher than the avoided burden allocated to the substitution of chemical 617 
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fertilizers. Those emissions strongly limit the environmental performance of this process when 618 

compared to the advanced thermal treatment of waste. 619 

The outcome of this study may be useful to policy makers to inform decisions to improve and sustain 620 

future policies for waste management and energy production.   621 
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Scenario 
kg of MSW treated/MJ of 

methane produced 

Scenario1-2 1.69 

Scenario 3-4 0.92 

Scenario 5 0.204 

Table 1. Yield in biogas production of the scenarios investigated. 622 

  623 
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    Modelled parameter Value Reference 
A

D
 o

f 
S

.1
, 

S
.2

 

Pre-

treatment 

and 

digester 

Continuous, single-stage, mixed tank 

mesophilic reactor operating at a 

temperature of 35 ˚C  

 - 

(Berglund and Börjesson, 2006; Evangelisti et 

al., 2014a; Monnet, 2003; Severn Wye Energy 

Agency, 2009) 

Biogas yield 

0.079 Nm3/kg of 

centrally separated 

organic fraction 

(Monson et al., 2007) 

Digester methane losses 3% 

(Berglund and Börjesson, 2006; Boldrin et al., 

2011; Dalemo et al., 1997; Fruergaard and 

Astrup, 2011) 

Water and 

acids 

removal 

Reaction of H2S with a catalytic bed of 

ZnO 
 - (Hagen and Polman, 2001; Persson, 2003) 

Water adsorbed on silica gel   - (Hagen and Polman, 2001; Persson et al., 2006) 

Biogas up-

grading by 

PSA 

Electricity consumption  0.8-0.88 kWh/Nm3 (Persson, 2003; Persson et al., 2006) 

Methane losses 3% 
(Patterson et al., 2011; Persson et al., 2006; 

Petersson, A. Wellinger, 2009)  

Digestate 

disposal 
To incineration  - (Swiss Centre for Life Cycle Inventories, 2014) 

A
D

 o
f 

S
.3

, 
S

.4
 

Pre-

treatment 

and 

digester 

Biogas yield 
0.14 Nm3/kg of source 

separated organic 

fraction 

(Banks et al., 2011; Evangelisti et al., 2014a; 
Møller et al., 2009; Robertson et al., 2010) 

 

Digestate 

disposal 

Fibres in the digestate 20% (Wrap, 2012) 

Liquor in the digestate 80% (Wrap, 2012) 

N of the liquor readily available to crops 80% (Wrap, 2011) 

P2O5 of the liquor readily available to 
crops 

100% (Wrap, 2011) 

K2O of the liquor readily available to 

crops 
100% (Wrap, 2011) 

Chemical fertilizer substituted by N ammonium sulphate (Defra, 2010) 

Chemical fertilizer substituted by P2O5 superphosphate (Defra, 2010) 

Chemical fertilizer substituted by K2O potassium chloride  (Defra, 2010) 

Nutrients dispersed to environment  - 
(Boldrin et al., 2011; Bruun et al., 2006; 

Evangelisti et al., 2014b; Møller et al., 2009) 

S.5 

Oxygen requirements 
Average EU cryogenic 

oxygen production  
(Thinkstep, 2015)  

Vitrified slag: system expansion 
Primary aggregates 

crushed rock 

(Korre and Durucan, 2009; Mankelow et al., 

2011) 

APC residue treatment  - 

(Swiss Centre for Life Cycle Inventories, 2014; 

Thinkstep, 2015) 

 

Water disposal  - (Thinkstep, 2015) 

Chemical requirements  - 
(Swiss Centre for Life Cycle Inventories, 2014; 

Thinkstep, 2015) 

 

Direct and avoided burdens  - Supplied by industrial developers 

Table 2. Key inventory data  624 
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 625 

MSW Composition  %wt 

Paper and Card 22.7 

Wood 3.7 

Metals 4.3 

Glass  6.6 

WEEE 2.2 

Textiles 2.8 

Plastics 10 

Organic Fines 35.3 

Inert/Aggregates/Soils 5.3 

Misc. Comb 7.1 

NCV MJ/kg 9 

Table 3. Residual waste composition (Evangelisti et al., 2015). 626 

  627 
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 628 

Scenarios 

Emissions to air [kg] 

Emissions 

to water 

[kg[ 

Ammonia 
Nitrogen 

Oxides 

Total 

Nitrogen 

Scenario 

1 
1.34E-05 -4.41E-05 -1.83E-09 

Scenario 

3 
3.95E-05 2.10E-05 -1.24E-09 

Scenario 

5 
6.93E-06 2.61E-04 3.22E-09 

Table 4. Emissions of ammonia and nitrogen oxides to air and of total nitrogen to fresh water. 629 

Data are reported as per 1 kg of waste as functional unit. 630 

  631 
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 632 
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Figure 1. System boundary  633 
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 634 

Figure 2. High level diagram of the anaerobic digestion process of centrally separated organic 635 

waste (S.1, S.2). 636 

  637 
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 638 

Figure 3. High level diagram of the anaerobic digestion process of source separated organic 639 

waste (S.3, S.4). 640 

 641 

642 
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 643 

Figure 4. High level diagram of the gasification and plasma technology producing Bio-SNG 644 

from MSW (S.5).  645 
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 646 

 647 

 648 

Figure 5. Environmental impacts of the scenarios analysed. Results are reported per 1 kg of 649 

waste as functional unit. 650 

  651 
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 652 

Figure 6. Environmental impacts of the scenarios analysed. Results are reported per 1 MJ of 653 

upgraded methane. 654 
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   656 

  657 

Figure 7. GWPs of S.1, S.3 and S.5 for future foreseen electricity and natural gas UK mix 658 

according to the a) gone green scenario (1 kg of MSW as functional unit); b) no progression 659 

scenario (1 kg of MSW as functional unit); c) gone green scenario (1 MJ of upgraded methane 660 

as functional unit) no progression scenario (1 MJ of upgraded methane as functional unit). The 661 

slow progression and no carbon life scenarios are reported in the supplementary material. 662 
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 664 

 665 

 666 

Figure 8. Hot spot analysis of the AD processes from centrally separated waste and source 667 

separated waste. Results are reported per1 kg of waste as functional unit. a) ADP; b) AP; c) EP; 668 

d) FAETP; e) GWP; f) ODP. Results are reported per 1kg of waste as functional unit. 669 
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 671 

 672 

Figure 9. GWP of the AD processes from centrally separated waste and source separated waste. 673 

Indirect, direct and avoided burdens are identified. Results are reported per 1kg of waste as 674 

functional unit.  675 
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