142 research outputs found

    GKAP Acts as a Genetic Modulator of NMDAR Signaling to Govern Invasive Tumor Growth.

    Get PDF
    Genetic linkage analysis previously suggested that GKAP, a scaffold protein of the N-methyl-D-aspartate receptor (NMDAR), was a potential modifier of invasion in a mouse model of pancreatic neuroendocrine tumor (PanNET). Here, we establish that GKAP governs invasive growth and treatment response to NMDAR inhibitors of PanNET via its pivotal role in regulating NMDAR pathway activity. Combining genetic knockdown of GKAP and pharmacological inhibition of NMDAR, we implicate as downstream effectors FMRP and HSF1, which along with GKAP demonstrably support invasiveness of PanNET and pancreatic ductal adenocarcinoma cancer cells. Furthermore, we distilled genome-wide expression profiles orchestrated by the NMDAR-GKAP signaling axis, identifying transcriptome signatures in tumors with low/inhibited NMDAR activity that significantly associate with favorable patient prognosis in several cancer types

    Outpatient Treatment with AZD7442 (Tixagevimab/Cilgavimab) Prevented COVID-19 Hospitalizations over 6 Months and Reduced Symptom Progression in the TACKLE Randomized Trial

    Get PDF
    INTRODUCTION: We assessed effects of AZD7442 (tixagevimab/cilgavimab) on deaths from any cause or hospitalizations due to coronavirus disease 2019 (COVID-19) and symptom severity and longer-term safety in the TACKLE adult outpatient treatment study. METHODS: Participants received 600 mg AZD7442 (n = 452) or placebo (n = 451) ≤ 7 days of COVID-19 symptom onset. RESULTS: Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 (key secondary endpoint) occurred in 20/399 (5.0%) participants receiving AZD7442 versus 40/407 (9.8%) receiving placebo [relative risk reduction (RRR) 49.1%; 95% confidence interval (CI) 14.5, 69.7; p = 0.009] or 50.7% (95% CI 17.5, 70.5; p = 0.006) after excluding participants unblinded before day 169 for consideration of vaccination). AZD7442 reduced progression of COVID-19 symptoms versus placebo through to day 29 (RRR 12.5%; 95% CI 0.5, 23.0) and improved most symptoms within 1-2 weeks. Over median safety follow-up of 170 days, adverse events occurred in 174 (38.5%) and 196 (43.5%) participants receiving AZD7442 or placebo, respectively. Cardiac serious adverse events occurred in two (0.4%) and three (0.7%) participants receiving AZD7442 or placebo, respectively. CONCLUSIONS: AZD7442 was well tolerated and reduced hospitalization and mortality through 6 months, and symptom burden through 29 days, in outpatients with mild-to-moderate COVID-19. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov, NCT04723394. ( https://beta. CLINICALTRIALS: gov/study/NCT04723394 )

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    The Second Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey (SDSS) has validated and made publicly available its Second Data Release. This data release consists of 3324 deg2 of five-band (ugriz) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars, and calibrating blank sky patches selected over 2627 deg2 of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ≈ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 mas rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point-spread function magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 to 9200 Å at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines and included in the Second Data Release. Further characteristics of the data are described, as are the data products themselves and the tools for accessing them

    The Third Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Third Data Release of the Sloan Digital Sky Survey (SDSS). This release, containing data taken up through June 2003, includes imaging data in five bands over 5282 deg^2, photometric and astrometric catalogs of the 141 million objects detected in these imaging data, and spectra of 528,640 objects selected over 4188 deg^2. The pipelines analyzing both images and spectroscopy are unchanged from those used in our Second Data Release.Comment: 14 pages, including 2 postscript figures. Submitted to AJ. Data available at http://www.sdss.org/dr
    corecore