444 research outputs found

    Hygienic quality of dehydrated aromatic herbs marketed in Southern Portugal

    Get PDF
    Dehydrated aromatic herbs are highly valued ingredients, widely used at home level and by food processing industry, frequently added to a great number of recipes in the Mediterranean countries. Despite being considered low-moisture products and classified as GRAS, during pre and post-harvesting stages of production they are susceptible of microbial contamination. In Europe an increasing number of food recalls and disease outbreaks associated with dehydrated herbs have been reported in recent years. In this study the microbial quality of 99 samples of aromatic herbs (bay leaves, basil, coriander, oregano, parsley, Provence herbs, rosemary and thyme) collected from retails shops in the region of Algarve (Southern Portugal) was assessed. All the samples were tested by conventional methods and were assayed for the total count of aerobic mesophilic microorganisms, Salmonella spp., Escherichia coli, coagulase-positive staphylococci and filamentous fungi. Almost 50 % of the herbs did not exceed the aerobic mesophilic level of 104 CFU/g. The fungi count regarded as unacceptable (106 CFU/g) was not found in any of the tested herbs, while 84 % of the samples ranged from ≤102 to 104 CFU/g. No sample was positive for the presence of Salmonella spp., Escherichia coli and staphylococci. The results are in compliance with the European Commission criteria although they point out to the permanent need of surveillance on the good standards of handling/cooking practices as well as the importance of avoiding contamination at production, retailing and distribution. The microbiological hazards associated with the pathogenic and toxigenic microbiota of dried herbs remain as a relevant public health issue, due to the fact that they are added to foods not submitted to any following lethal procedure. Control measures should be adopted in order to ensure that all phases of their supply chain respect the food safety standards.FCT: UID/BIA/04325/2019.info:eu-repo/semantics/publishedVersio

    Parity Doubling and the S Parameter Below the Conformal Window

    Get PDF
    We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with Nf=2N_f = 2 and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when NfN_f is increased from 2 to 6, motivating study of these trends as NfN_f is increased further, toward the critical value for transition from confinement to infrared conformality.Comment: 4 pages, 5 figures; to be submitted to PR

    A 15.65 solar mass black hole in an eclipsing binary in the nearby spiral galaxy Messier 33

    Full text link
    Stellar-mass black holes are discovered in X-ray emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses >10 solar masses, which is consistent with the fact that the most massive stellar black holes known so all have masses within 1 sigma of 10 solar masses. Here we report a mass of 15.65 +/- 1.45 solar masses for the black hole in the recently discovered system M33 X-7, which is located in the nearby galaxy Messier 33 (M33) and is the only known black hole that is in an eclipsing binary. In order to produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45 day orbit about its 70.0 +/- 6.9 solar mass companion, there must have been a ``common envelope'' phase of evolution in which a significant amount of mass was lost from the system. We find the common envelope phase could not have occured in M33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.Comment: To appear in Nature October 18, 2007. Four figures (one color figure degraded). Differs slightly from published version. Supplementary Information follows in a separate postin

    Body mass index and molecular subtypes of colorectal cancer

    Get PDF
    BACKGROUND: Obesity is an established risk factor for colorectal cancer (CRC), but the evidence for the association is inconsistent across molecular subtypes of the disease. METHODS: We pooled data on body mass index (BMI), tumor microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, and Jass classification types for 11 872 CRC cases and 11 013 controls from 11 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for covariables. RESULTS: Higher BMI was associated with increased CRC risk (OR per 5 kg/m2 = 1.18, 95% CI = 1.15 to 1.22). The positive association was stronger for men than women but similar across tumor subtypes defined by individual molecular markers. In analyses by Jass type, higher BMI was associated with elevated CRC risk for types 1-4 cases but not for type 5 CRC cases (considered familial-like/Lynch syndrome microsatellite instability-H, CpG island methylator phenotype-low or negative, BRAF-wild type, KRAS-wild type, OR = 1.04, 95% CI = 0.90 to 1.20). This pattern of associations for BMI and Jass types was consistent by sex and design of contributing studies (cohort or case-control). CONCLUSIONS: In contrast to previous reports with fewer study participants, we found limited evidence of heterogeneity for the association between BMI and CRC risk according to molecular subtype, suggesting that obesity influences nearly all major pathways involved in colorectal carcinogenesis. The null association observed for the Jass type 5 suggests that BMI is not a risk factor for the development of CRC for individuals with Lynch syndrome

    Broadband cavity-enhanced detection of magnetic field effects in chemical models of a cryptochrome magnetoreceptor

    Get PDF
    Broadband cavity-enhanced absorption spectroscopy (BBCEAS) is shown to be a sensitive method for the detection of magnetic field effects (MFEs) in two flavin-based chemical reactions which are simple models for cryptochrome magnetoreceptors. The advantages of optical cavity-based detection and (pseudo-white-light) supercontinuum radiation have been combined to provide full spectral coverage across the whole of the visible spectrum (425 < λ < 700 nm). This region covers the absorbance spectra of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) as well as their photogenerated radicals. To illustrate the power of this technique, BBCEAS has been used to record the spectral dependence of MFEs for photoinduced radical pairs formed in the intermolecular reaction of FMN with lysozyme and the intramolecular photochemistry of FAD. These reactions have been chosen for their photochemical similarities to cryptochrome proteins which have been proposed as key to the magnetic compass sense of many animals including birds. In experiments performed using low protein concentrations (10 μM) and 1 mm optical path-lengths, absorbance changes as small as 1 × 10(-7) (representing <0.1% MFEs) have been detected with good signal-to-noise offering the prospect of sensitive MFE detection in cryptochrome

    Validation Studies at Tucson, Arizona

    Get PDF

    Strongly exchange-coupled triplet pairs in an organic semiconductor

    Get PDF
    From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly-interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin-manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes co-existing with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 µs and a spin coherence time approaching 1 µs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.Gates-Cambridge Trust, Winton Programme for the Physics of Sustainability, Freie Universität Berlin within the Excellence Initiative of the German Research Foundation, Engineering and Physical Sciences Research Council (Grant ID: EP/G060738/1)This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/nphys3908

    Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examined the effect of carbohydrate and whey protein supplements on recovery of neuromuscular function after prolonged load carriage.</p> <p>Methods</p> <p>Ten male participants (body mass: 81.5 ± 10.5 kg, age: 28 ± 9 years, <inline-formula><graphic file="1550-2783-7-2-i1.gif"/></inline-formula> O<sub>2</sub>max: 55.0 ± 5.5 ml·kg<sup>-1</sup>·min<sup>-1</sup>) completed three treadmill walking tests (2 hr, 6.5 km·h<sup>-1</sup>), carrying a 25 kg backpack consuming 500 ml of either: (1) Placebo (flavoured water) [PLA], (2) 6.4% Carbohydrate Solution [CHO] or (3) 7.0% Whey Protein Solution [PRO]. For three days after load carriage, participants consumed two 500 ml supplement boluses. Muscle performance was measured before and at 0, 24, 48 and 72 h after load carriage, during voluntary and electrically stimulated contractions.</p> <p>Results</p> <p>Isometric knee extension force decreased immediately after load carriage with no difference between conditions. During recovery, isometric force returned to pre-exercise values at 48 h for CHO and PRO but at 72 h for PLA. Voluntary activation decreased immediately after load carriage and returned to pre-exercise values at 24 h in all conditions (<it>P </it>= 0.086). During recovery, there were no differences between conditions for the change in isokinetic peak torque. Following reductions immediately after load carriage, knee extensor and flexor peak torque (60°·s<sup>-1</sup>) recovered to pre-exercise values at 72 h. Trunk extensor and flexor peak torque (15°·s<sup>-1</sup>) recovered to pre-exercise values at 24 h (<it>P </it>= 0.091) and 48 h (<it>P </it>= 0.177), respectively.</p> <p>Conclusion</p> <p>Recovery of neuromuscular function after prolonged load carriage is improved with either carbohydrate or whey protein supplementation for isometric contractions but not for isokinetic contractions.</p

    Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity

    Get PDF
    Background Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. Results To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Conclusions Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV
    corecore