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We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial
resonances, and the electroweak S parameter, in an SU(3) gauge theory with Nf = 2 and 6 fermions
in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per
electroweak doublet decreases when Nf is increased from 2 to 6, motivating study of these trends as Nf

is increased further, toward the critical value for transition from confinement to infrared conformality.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.Nz

Introduction In a recent letter [1], we studied the chi-
ral properties of an SU(3) gauge theory with Nf massless
Dirac fermions in the fundamental representation as Nf is
increased from 2 to 6. We noted that the Nf = 2 simu-
lations are in good agreement with measured QCD values,
and that the Nf = 6 results indicate substantial enhance-
ment of the chiral condensate. Here we extend our study of
these two theories, presenting results for the electroweak S
parameter and for the lightest vector and axial resonances.

For an SU(N ) gauge theory, lattice simulations [2–6]
suggest infrared conformality exists for Nf values from
the onset of asymptotic freedom down to a critical value
N c

f . A fixed point (whose value depends on the defining
scheme) governs the infrared behavior. Below this “confor-
mal window”, chiral symmetry breaking and confinement
set in. Even for Nf < N c

f studies using continuum gap
equations suggest that there can remain an approximate in-
frared fixed point provided that 0 < N c

f − Nf ¿ N c
f .

The scale of chiral symmetry breaking is small compared
to some high scale where asymptotic freedom sets in, and
the fixed point approximately governs the theory from the
breaking scale to this higher scale. This “walking” behav-
ior leads to chiral-condensate enhancement, which can ad-
dress the problem of obtaining large enough quark and lep-
ton masses in technicolor theories.

It has been suggested [7–9] that walking theories could
address another problem by leading to smaller values of the
electroweak S parameter. The value of S is related to the
spectrum of vector and axial resonances in the theory. As
in Ref. [1], we start with Nf = 2, allowing us to check
the reliability of our methods by comparison with QCD
phenomenology. We then consider the Nf = 6 theory in
which the coupling runs more slowly than in the Nf = 2
theory, but which is not yet truly walking. Proceeding care-
fully toward N c

f is prudent since the eventual appearance
of widely separated scales associated with walking is chal-

lenging for lattice methods.
We first compute the S parameter from the defining cur-

rent correlators, and then present results for the lowest ly-
ing vector and axial masses and decay constants. We dis-
cuss our results along with the related Weinberg spectral
function sum rules, and then summarize.

The S parameter The S parameter can be defined in
terms of the vector and axial current-correlation functions
with, by convention, the would-be Nambu-Goldstone-
boson (NGB) contribution to the standard-model (SM) ra-
diative corrections removed. With Nf/2 massless elec-
troweak doublets, it can be written as [10]

S = 4π(Nf/2) [Π′
V V (0)−Π′

AA(0)]−∆SSM

=
1
3π

∫ ∞

0

ds

s

{
(Nf/2) [RV (s)−RA(s)]

−1
4

[
1−

(
1− m2

H

s

)3

θ(s−m2
H)

]}
, (1)

where ΠV V (Q2) and ΠAA(Q2) are the transverse corre-
lation functions for a single electroweak doublet, R(s) ≡
12π Im Π′(s), and mH is the reference Higgs mass. The
presence of RV (s) − RA(s) in the spectral integral sug-
gests that S could decrease if the resonance spectrum be-
comes more parity doubled with increasing Nf .

ForNf = 2, there are 3 Goldstone bosons, with the I3 =
1 pair leading to RV (s) → 1/4 as s → 0. (RA(s) → 0.)
The standard-model subtraction removes the resultant in-
frared divergence. With Nf/2 electroweak doublets, there
are N 2

f − 1 NGB’s in the absence of other interactions.
Among these, (Nf/2)2 pairs contribute to S, leading to
RV (0) = (1/4)Nf/2. With standard-model and other in-
teractions included,N2

f−4 of theN2
f−1 Goldstone bosons

will be pseudo-Nambu-Goldstone bosons (PNGBs). The
S parameter is again infrared finite, depending logarithmi-
cally on the masses of the PNGBs.
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Lattice simulations are carried out with a finite fermion
mass mf , requiring extrapolation to reach the chiral limit.
With Nf/2 electroweak doublets, since we do not include
SM and other interactions to give mass to the PNGBs, the
extrapolation for Nf 6= 2 would lead to log mf terms in
S. For our simulations, mf is not yet small enough to see
clear evidence for these chiral logs.

Simulation Details Simulations are performed using
domain-wall fermions and the Iwasaki improved gauge ac-
tion [11]. The domain-wall formulation suppresses the chi-
ral symmetry breaking associated with fermion discretiza-
tion, and preserves flavor symmetry at finite lattice spac-
ing, both desirable properties for computation of the S-
parameter. Gauge configurations are generated as in Ref.
[1]. Dimensionful quantities are given in lattice units. The
lattice volume is set to 323×64, with the length of the fifth
dimensionLs = 16 and the domain-wall heightm0 = 1.8.
With the choices β = 2.70 for Nf = 2 and β = 2.10 for
Nf = 6, the physical scales represented by the mass of
the lightest vector resonance, are the same within errors.
For the NGB decay constants, the chiral extrapolation for
Nf = 6 is not yet possible, so it remains open whether
they are the same in the chiral limit [1].

Simulations are performed for fermion masses mf =
0.005 to 0.03, although the Nf = 2 results for mf =
0.005 may suffer from finite-volume effects, and are not in-
cluded in the analysis. For other values of mf , MPL > 4,
so that finite-volume effects should be small. Other sys-
tematic effects, for example due to the finite lattice spac-
ing are also believed to be small. The error bars shown in
each figure are therefore statistical. At finite lattice spac-
ing, even with mf = 0, the chiral symmetry is not ex-
act, with the violation captured in a small residual mass
mres (= 2.63(2)× 10−5 for Nf = 2 and 8.26(3)× 10−4

for Nf = 6 ). The total fermion mass m is then m ≡
mf +mres.

Current Correlators The lattice expression for the cur-
rent correlator of interest is

Πµν
V V (Q) = δµνΠV V (Q2)− (QµQν/Q2)Π̃V V (Q2)

= Z
∑

x

eiQ·(x+µ̂/2)〈Vµ(x)V ν(0)〉 (2)

and similarly for ΠAA. Here Vµ is the conserved domain-
wall vector current, V ν is the non-conserved local cur-
rent, and Z is a non-perturbative renormalization constant.
(x + µ̂/2) appears because Vµ(x) is point split on the
link (x, x + µ). The use of conserved currents ensures
that lattice artifacts cancel in the V − A current correlator
ΠV−A(Q2) ≡ ΠV V (Q2)−ΠAA(Q2) [12].

We calculate ΠV−A(Q2) for a range of positive (space-
like) Q2 values, and for each mf extrapolate to Q2 = 0 to
determine the slope 4πΠ′

V−A(0) entering the S parame-
ter. In Fig. 1, we show the simulation data for ΠV−A(Q2),
along with statistical errors and fit curves. The data itself

FIG. 1: ΠV−A(Q2) data and fits for Nf = 2 and 6. Fits, over the
range Q2 < 0.40, are done separately for each mf .
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FIG. 2: V − A correlator slopes at Q2 = 0 for Nf = 2 (red
triangles) and Nf = 6 (blue circles). For each of the solid points,
MP L > 4.

indicates that for Nf = 2, Π′
V−A(0) increases as mf de-

creases, while for Nf = 6, it decreases, suggesting a rel-
ative decrease in S per electroweak doublet at Nf = 6.
We fit the ΠV−A(Q2) data for Q2 < 0.4 using a four-
parameter, Pade(1,2) form (linear numerator, quadratic de-
nominator). These fits, behaving like 1/Q2 at large pos-
itive Q2, are shown with statistical error bands in Fig. 1.
Each has two poles at real, negative Q2, representing a
time-like structure with cuts and multiple poles. Each fit
leads to a value of Π′

V−A(0) stable as the number of Q2

points is varied.
The correlator slopes at Q2 = 0 are plotted in Fig. 2.

In this figure and others, we plot versus M2
P/M

2
V 0 rather

than m, where MP is the NGB mass [1], and MV 0 is the
extrapolated mass of the lightest vector state. M2

P/M
2
V 0 is

more directly physical, and the relation between M2
P and



3

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

MP

2
�MV0

2

S
�
4
Π
 N

f
�2

!!
' V

"
A
 0

!"
#
S
S
M

FIG. 3: S parameter for Nf = 2 (red triangles) and Nf = 6
(blue circles). For each of the solid points, MP L > 4. The bands
correspond to fits explained in the text.

m is strongly Nf -dependent. The value of MV 0, to be dis-
cussed later, is roughly 0.2 in lattice units for bothNf = 2
and 6. For each of the solid points, MPL > 4. As an-
ticipated from the data in Fig. 1, Π′

V−A(0) at Nf = 6
drops below Π′

V−A(0) at Nf = 2 for the smaller M2
P

values, suggesting a suppression of S at Nf = 6. This
interpretation requires care, however, since the extrapola-
tion M2

P ∝ m → 0 is dominated by chiral logs for both
Nf = 2 and 6.

S-Parameter Results The S parameter (Eq. 1) is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the ∆SSM integral in
Eq. 1 with an infrared cutoff at s = 4M2

P , and taking
mH = MV 0. For the case 2MP < MV 0,

∆SSM(MP ) =
1

12π

[
11
6

+ log
(
M2

V 0

4M2
P

)]
. (3)

We use values for MP and MV 0 determined in Ref. [1].
The choice mH = MV 0 corresponds roughly to a 1 TeV
value for the reference Higgs mass.

In Fig. 3, we plot S ≡ 4π(Nf/2)Π′
V−A(0) − ∆SSM .

ForNf = 2, the results are consistent with previous lattice
simulations [12, 13]. The SM subtraction at Nf = 2 is
small, reaching a value ∼ 0.04 for the lowest solid mass
point, corresponding to mf = 0.010. A smooth extrap-
olation to M2

P = 0 is expected since the LO chiral logs
eventually appearing in Π′

V−A(0) are canceled by the SM
subtraction, Eq. 3. Given the linearity of the solid data
points, we include a linear fit to the three solid points with
M2

P/M
2
V 0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be an
NLO term of the form M2

P logM2
P , but it is not visible in

our data so we disregard it. The fit, with error band, is
shown in Fig. 3, giving Sm=0 = 0.32(5), consistent with
the value obtained using scaled-up QCD data [10].

The Nf = 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply scal-
ing up the Nf = 2 points by a factor of 3. The value of S

at the lower mass points, where M2
P/M

2
V 0 < 1, begins to

drop well below its value at the higher mass points. This
trend has appeared at Nf = 6 even though 6 ¿ N c

f . As
M2

P is decreased further at Nf = 6, S as computed here
will eventually turn up since the SM subtraction leaves the
chiral-log contribution (1/12π)[N2

f /4 − 1] logM−2
P . To

estimate where this turn-up sets in, we include a simple fit
of the form S = A + BM2

P + (2/3π) log(M2
V 0/M

2
P )

to the three points with M2
P/M

2
V 0 < 1, disregarding a

possible M2
P logM2

P term. This fit, with error band, is
also shown in Fig. 3. In a realistic context, of course, the
PNGBs receive mass even in the limit m → 0 from SM
and other interactions not included here, and these masses
provide the infrared cutoff in the logs.

Resonance Spectrum A question of general interest
for an SU(N) gauge theory is the form of the resonance
spectrum as Nf is increased toward N c

f . A trend toward
parity doubling, for example, would provide a striking con-
trast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.

We have so far computed the masses, MV and MA, and
decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ra-
tio in Fig. 4. Since the solid data points (MPL > 4) are
quite linear with a small slope for each case except MA at
Nf = 6, and since in each case, the NLO term in chiral
perturbation theory is linear in M2

P ∝ m, we include a
linear fit to all the solid points. The error bars on the ex-
trapolations are also shown. ForNf = 2, MV extrapolates
to 0.215(3) and forNf = 6 it extrapolates to 0.209(3). As
noted above, the equality within errors of these two masses
in lattice units was arranged by the choice of the lattice
coupling in each case.

For Nf = 2, the extrapolated value of MA/MV =
1.476(40) is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf = 6 data points for MA

do not yet allow a simple fit and extrapolation, However,
they do indicate a substantial decrease in MA/MV for
M2

P/M
2
V 0 < 1, the same range for which the S parameter

begins to drop for Nf = 6, indicating that the decrease in
S is indeed associated with a trend toward parity doubling.

Our simulation results for FV and FA, using the nor-
malization conventions of Ref. [10], will be presented in
a future paper. The dependence on M2

P/M
2
V 0 is mild, and

for each case except the FA at Nf = 6, quite linear with
a small slope. Although there is known to be an NLO chi-
ral log for the decay constants, it is not visible in these
cases, so we have performed a linear fit to the data. We
simply report here that for Nf = 2 the linearly extrapo-
lated values, converted to physical units using the lattice
scale determined from MV 0, are FV = 141.8(3.8) MeV
and FA = 138.9(8.2) MeV, agreeing well with the mea-
sured QCD results [11, 15].

Discussion The relation between a diminished S pa-
rameter and the spectrum can be explored through the dis-
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FIG. 4: Axial and vector masses, MA and MV , and their ratio.
Straight lines show linear fits to the solid points (MP L > 4), with
the extrapolated values and errors shown to the left.

persion relation

ΠV−A(Q2) =
Q2

12π

∫ ∞

0

ds

π

RV (s)−RA(s)
s+Q2

−F 2
P , (4)

where FP ' 93 MeV for two-flavor QCD. Here, we in-
clude a few remarks about this use of the dispersion rela-
tion via the assumption of single-pole dominance.

As a preliminary, recall that in the chiral limit (and
in the continuum), the operator product expansion gives
ΠV−A(Q2) ∼ 1/Q4 asQ2 →∞. In the resultant first and
second (integral) Weinberg sum rules (WSRs), the assump-
tion of single pole dominance,RV,A(s) = 12π2F 2

V,Aδ(s−
M2

V,A), then leads to the relations F 2
V − F 2

A = F 2
P and

F 2
VM

2
V − F 2

AM
2
A = 0. At finite m, however, ΠV−A(Q2)

falls more slowly with Q2. The simulation data in the Q2

range of Fig. 1 behaves like m〈ψ̄ψ〉/Q2, but there will be
an additional small (O(m2)) term [16]. While the data are
consistent with the first WSR, the single-pole-dominance
relation F 2

V − F 2
A = F 2

P is not satisfied at Nf = 2 for any
m, the LHS being less than 50% of the RHS. The extrapo-
lated values and the QCD experimental values fail by even
more. A similar discussion applies to the second WSR at
Nf = 2 and the resultant pole-dominance relation. For
Nf = 6, the errors on FA do not yet allow a useful test.

Turning to the S parameter, a crude expression de-
riving from the Q2 → 0 limit of the dispersion rela-
tion can be obtained by assuming single-pole dominance,
and neglecting the SM subtraction. The result, S =
4π(Nf/2)[F 2

V /M
2
V − F 2

A/M
2
A], pays no heed to a ref-

erence Higgs mass and has no direct dependence on the
PNGB masses forNf = 6. On the other hand, the stronger
UV convergence of the integral expression (Eq. 1) could
make single-pole dominance more reliable than for the
WSRs. In fact, evaluation of the above expression using

our simulation data leads, for Nf = 2, to a result within
30% of our direct simulation of S at the smaller M2

P val-
ues. For Nf = 6, the agreement with the direct simulation
is at least as good, and, importantly, shows the relative de-
crease of S per electroweak doublet.

Conclusions We have described a lattice simulation of
the masses and decay constants of the lowest-lying vec-
tor and axial resonances, and the electroweak S parameter,
in an SU(3) gauge theory with Nf = 2 and 6 fermions
in the fundamental representation. The spectrum becomes
more parity doubled and the S parameter per electroweak
doublet decreases when Nf is increased from 2 to 6. The
final value of S for any Nf > 2 will depend logarithmi-
cally on the masses of PNGBs, generated by SM and other
physics not included here. It will be interesting to study
these trends as Nf is increased further, toward N c

f .
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