2,161 research outputs found
Antimicrobial Activity of the Quinoline Derivative HT61 against Staphylococcus aureus Biofilms.
Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections
Beyond wasted and stunted—a major shift to fight child undernutrition
Child undernutrition refers broadly to the condition in which food intake is inadequate to meet a child's needs for physiological function, growth, and the capacity to respond to illness. Since the 1970s, nutritionists have categorised undernutrition in two major ways, either as wasted (ie, low weight for height, or small mid-upper arm circumference) or stunted (ie, low height for age). This approach, although useful for identifying populations at risk of undernutrition, creates several problems: the focus is on children who have already become undernourished, and this approach draws an artificial distinction between two idealised types of undernourished children that are widely interpreted as indicative of either acute or chronic undernutrition. This distinction in turn has led to the separation of programmatic approaches to prevent and treat child undernutrition. In the past 3 years, research has shown that individual children are at risk of both conditions, might be born with both, pass from one state to the other over time, and accumulate risks to their health and life through their combined effects. The current emphasis on identifying children who are already wasted or stunted detracts attention from the larger number of children undergoing the process of becoming undernourished. We call for a major shift in thinking regarding how we assess child undernutrition, and how prevention and treatment programmes can best address the diverse causes and dynamic biological processes that underlie undernutrition
Single-base substitutions in the CHM promoter as a cause of choroideremia
Although over 150 unique mutations affecting the coding sequence of CHM have been identified in patients with the X-linked chorioretinal disease choroideremia (CHM), no regulatory mutations have been reported, and indeed the promoter has not been defined. Here, we describe two independent families affected by CHM bearing a mutation outside the gene's coding region at position c.-98: C>A and C>T, which segregated with the disease. The male proband of family 1 was found to lack CHM mRNA and its gene product Rab escort protein 1, whereas whole-genome sequencing of an affected male in family 2 excluded the involvement of any other known retinal genes. Both mutations abrogated luciferase activity when inserted into a reporter construct, and by further employing the luciferase reporter system to assay sequences 5′ to the gene, we identified the CHM promoter as the region encompassing nucleotides c.-119 to c.-76. These findings suggest that the CHM promoter region should be examined in patients with CHM who lack coding sequence mutations, and reveals, for the first time, features of the gene's regulation
A randomised, open label, active comparator trial assessing the effects of 26 weeks of liraglutide or sitagliptin on cardiovascular function in young obese adults with type 2 diabetes
Aim
To compare the effects of a glucagon‐like peptide‐1 receptor agonist and a dipeptidyl peptidase‐4 inhibitor on magnetic resonance imaging‐derived measures of cardiovascular function.
Materials and methods
In a prospective, randomized, open‐label, blinded endpoint trial liraglutide (1.8 mg) and sitagliptin (100 mg) were compared in asymptomatic, non‐insulin treated young (aged 18‐50 years) adults with obesity and type 2 diabetes. The primary outcome was difference in circumferential peak early diastolic strain rate change (PEDSR), a biomarker of cardiac diastolic dysfunction 26 weeks after randomization. Secondary outcomes included other indices of cardiac structure and function, HbA1c and body weight.
Results
Seventy‐six participants were randomized (54% female, mean ± SD age 44 ± 6 years, diabetes duration 4.4 years, body mass index 35.3 ± 6.1 kg m−2), of whom 65% had ≥1 cardiovascular risk factor. Sixty‐one participants had primary outcome data available. There were no statistically significant between‐group differences (intention‐to‐treat; mean [95% confidence interval]) in PEDSR change (−0.01 [−0.07, +0.06] s−1), left ventricular ejection fraction (−1.98 [−4.90, +0.94]%), left ventricular mass (+1.14 [−5.23, +7.50] g) or aortic distensibility (−0.35 [−0.98, +0.28] mmHg−1 × 10−3) after 26 weeks. Reductions in HbA1c (−4.57 [−9.10, −0.37] mmol mol−1) and body weight (−3.88 [−5.74, −2.01] kg) were greater with liraglutide.
Conclusion
There were no differences in cardiovascular structure or function after short‐term use of liraglutide and sitagliptin in younger adults with obesity and type 2 diabetes. Longer studies in patients with more severe cardiac dysfunction may be necessary before definitive conclusions can be made about putative pleiotropic properties of incretin‐based therapies
Translating clinicians' beliefs into implementation interventions (TRACII) : a protocol for an intervention modeling experiment to change clinicians' intentions to implement evidence-based practice
Background: Biomedical research constantly produces new findings, but these are not routinely incorporated into health care practice. Currently, a range of interventions to promote the uptake of emerging evidence are available. While their effectiveness has been tested in pragmatic trials, these do not form a basis from which to generalise to routine care settings. Implementation research is the scientific study of methods to promote the uptake of research findings, and hence to reduce inappropriate care. As clinical practice is a form of human behaviour, theories of human behaviour that have proved to be useful in other settings offer a basis for developing a scientific rationale for the choice of interventions. Aims: The aims of this protocol are 1) to develop interventions to change beliefs that have already been identified as antecedents to antibiotic prescribing for sore throats, and 2) to experimentally evaluate these interventions to identify those that have the largest impact on behavioural intention and behavioural simulation.
Design: The clinical focus for this work will be the management of uncomplicated sore throat in general practice. Symptoms of upper respiratory tract infections are common presenting features in primary care. They are frequently treated with antibiotics, and research evidence is clear that antibiotic treatment offers little or no benefit to otherwise healthy adult patients.
Reducing antibiotic prescribing in the community by the "prudent" use of antibiotics is seen as one way to slow the rise in antibiotic resistance, and appears safe, at least in children. However, our understanding of how to do this is limited. Participants will be general medical practitioners. Two theory-based interventions will be designed to address the discriminant beliefs in the prescribing of antibiotics for sore throat, using empirically derived resources. The interventions will be evaluated in a 2 × 2 factorial randomised controlled trial delivered in a postal questionnaire survey. Two outcome measures will be assessed: behavioural intention and behavioural simulation.This study is funded by the European Commission Research Directorate as part of a multi-partner program: Research Based Education and Quality Improvement (ReBEQI): A Framework and tools to develop effective quality improvement programs in European healthcare. (Proposal No: QLRT-2001-00657)
Representing complex data using localized principal components with application to astronomical data
Often the relation between the variables constituting a multivariate data
space might be characterized by one or more of the terms: ``nonlinear'',
``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or,
more general, ``complex''. In these cases, simple principal component analysis
(PCA) as a tool for dimension reduction can fail badly. Of the many alternative
approaches proposed so far, local approximations of PCA are among the most
promising. This paper will give a short review of localized versions of PCA,
focusing on local principal curves and local partitioning algorithms.
Furthermore we discuss projections other than the local principal components.
When performing local dimension reduction for regression or classification
problems it is important to focus not only on the manifold structure of the
covariates, but also on the response variable(s). Local principal components
only achieve the former, whereas localized regression approaches concentrate on
the latter. Local projection directions derived from the partial least squares
(PLS) algorithm offer an interesting trade-off between these two objectives. We
apply these methods to several real data sets. In particular, we consider
simulated astrophysical data from the future Galactic survey mission Gaia.Comment: 25 pages. In "Principal Manifolds for Data Visualization and
Dimension Reduction", A. Gorban, B. Kegl, D. Wunsch, and A. Zinovyev (eds),
Lecture Notes in Computational Science and Engineering, Springer, 2007, pp.
180--204,
http://www.springer.com/dal/home/generic/search/results?SGWID=1-40109-22-173750210-
Prader–Willi syndrome and autism spectrum disorders: an evolving story
Prader–Willi syndrome (PWS) is well-known for its genetic and phenotypic complexities. Caused by a lack of paternally derived imprinted material on chromosome 15q11–q13, individuals with PWS have mild to moderate intellectual disabilities, repetitive and compulsive behaviors, skin picking, tantrums, irritability, hyperphagia, and increased risks of obesity. Many individuals also have co-occurring autism spectrum disorders (ASDs), psychosis, and mood disorders. Although the PWS 15q11–q13 region confers risks for autism, relatively few studies have assessed autism symptoms in PWS or directly compared social, behavioral, and cognitive functioning across groups with autism or PWS. This article identifies areas of phenotypic overlap and difference between PWS and ASD in core autism symptoms and in such comorbidities as psychiatric disorders, and dysregulated sleep and eating. Though future studies are needed, PWS provides a promising alternative lens into specific symptoms and comorbidities of autism
Smoothing a rugged protein folding landscape by sequence-based redesign
The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as -antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create , a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.BTP is a Medical Research Council Career Development Fellow. AAN and JJH are supported by the Wellcome Trust (grant number WT 095195). SM acknowledges fellowship support from the Australian Research Council (FT100100960). NAB is an Australian Research Council Future Fellow (110100223). GIW is an Australian Research Council Discovery Outstanding Researcher Award Fellow (DP140100087). AMB is a National Health and Medical Research Senior Research Fellow (1022688). JCW is an NHMRC Senior Principal Research fellow and also acknowledges the support of an ARC Federation Fellowship. We thank the Australian Synchrotron for beam-time and technical assistance. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) (www.massive.org.au). We acknowledge the Monash Protein Production Unit and Monash Macromolecular Crystallization Facilit
Smoothing a rugged protein folding landscape by sequence-based redesign
The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation.
Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and
misfolding. Serpins exist in a metastable state that undergoes a major conformational change in
order to inhibit proteases. However, conformational labiality of the native serpin fold renders them
susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To
investigate how serpins balance function and folding, we used consensus design to create conserpin,
a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant.
Characterization of its structure, folding and dynamics suggest that consensus design has remodeled
the folding landscape to reconcile competing requirements for stability and function. This approach
may offer general benefits for engineering functional proteins that have risky folding landscapes,
including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein
therapeutics
Large emissions from floodplain trees close the Amazon methane budget
Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources
- …